Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
Add more filters










Publication year range
1.
Science ; 382(6666): 73-75, 2023 10 06.
Article in English | MEDLINE | ID: mdl-37797035

ABSTRACT

Human footprints at White Sands National Park, New Mexico, USA, reportedly date to between ~23,000 and 21,000 years ago according to radiocarbon dating of seeds from the aquatic plant Ruppia cirrhosa. These ages remain controversial because of potential old carbon reservoir effects that could compromise their accuracy. We present new calibrated 14C ages of terrestrial pollen collected from the same stratigraphic horizons as those of the Ruppia seeds, along with optically stimulated luminescence ages of sediments from within the human footprint-bearing sequence, to evaluate the veracity of the seed ages. The results show that the chronologic framework originally established for the White Sands footprints is robust and reaffirm that humans were present in North America during the Last Glacial Maximum.


Subject(s)
Biological Evolution , Hominidae , Animals , Humans , Luminescence , North America , Radiometric Dating/methods , New Mexico , Parks, Recreational , Pollen , Alismatales , Carbon Radioisotopes , Seeds
3.
J Neuroeng Rehabil ; 20(1): 37, 2023 03 31.
Article in English | MEDLINE | ID: mdl-37004111

ABSTRACT

BACKGROUND: Paretic propulsion [measured as anteriorly-directed ground reaction forces (AGRF)] and trailing limb angle (TLA) show robust inter-relationships, and represent two key modifiable post-stroke gait variables that have biomechanical and clinical relevance. Our recent work demonstrated that real-time biofeedback is a feasible paradigm for modulating AGRF and TLA in able-bodied participants. However, the effects of TLA biofeedback on gait biomechanics of post-stroke individuals are poorly understood. Thus, our objective was to investigate the effects of unilateral, real-time, audiovisual TLA versus AGRF biofeedback on gait biomechanics in post-stroke individuals. METHODS: Nine post-stroke individuals (6 males, age 63 ± 9.8 years, 44.9 months post-stroke) participated in a single session of gait analysis comprised of three types of walking trials: no biofeedback, AGRF biofeedback, and TLA biofeedback. Biofeedback unilaterally targeted deficits on the paretic limb. Dependent variables included peak AGRF, TLA, and ankle plantarflexor moment. One-way repeated measures ANOVA with Bonferroni-corrected post-hoc comparisons were conducted to detect the effect of biofeedback on gait biomechanics variables. RESULTS: Compared to no-biofeedback, both AGRF and TLA biofeedback induced unilateral increases in paretic AGRF. TLA biofeedback induced significantly larger increases in paretic TLA than AGRF biofeedback. AGRF biofeedback increased ankle moment, and both feedback conditions increased non-paretic step length. Both types of biofeedback specifically targeted the paretic limb without inducing changes in the non-paretic limb. CONCLUSIONS: By showing comparable increases in paretic limb gait biomechanics in response to both TLA and AGRF biofeedback, our novel findings provide the rationale and feasibility of paretic TLA as a gait biofeedback target for post-stroke individuals. Additionally, our results provide preliminary insights into divergent biomechanical mechanisms underlying improvements in post-stroke gait induced by these two biofeedback targets. We lay the groundwork for future investigations incorporating greater dosages and longer-term therapeutic effects of TLA biofeedback as a stroke gait rehabilitation strategy. Trial registration NCT03466372.


Subject(s)
Stroke Rehabilitation , Stroke , Aged , Humans , Male , Middle Aged , Biomechanical Phenomena/physiology , Gait/physiology , Stroke/complications , Stroke Rehabilitation/methods , Walking/physiology
4.
Article in English | MEDLINE | ID: mdl-36901328

ABSTRACT

PURPOSE: The primary aim was to evaluate dentoalveolar expansion with Invisalign clear aligners comparing linear measurements in ClinCheck vs. cone beam computed tomography (CBCT). This would enable an assessment of to what extent expansion gained from Invisalign clear aligners was due to buccal tipping and/or bodily translation of the posterior teeth. The study also evaluated the predictive value of Invisalign ClinCheck® (Align Technology, San Jose, CA, USA) to final outcomes. METHODS: The orthodontic records of thirty-two (32) subjects comprised the sample to conduct this study. Linear values of the upper arch width were measured for premolars and molars at two different points (occlusal and gingival) utilized for ClinCheck® measurements and three different points for CBCT measurements before (T0 and after treatment (T1). Paired T-tests at a significance level of 0.05 were used for analyses. RESULTS: Expansion was found to be possible with Invisalign clear aligners. However, more expansion was measured at the cusp tips compared to gingival margins (p < 0.0001), indicating more tipping was occurring than bodily translation. ClinCheck® also showed a significant overestimation of the amount of expansion capable, with nearly 70% expression in the first premolar area, and the expression decreased as one moved posteriorly with only 35% expressed at the first molar area (p < 0.0001). CONCLUSIONS: Dentoalveolar expansion with Invisalign is achieved through buccal tipping of posterior teeth and bodily translation; and there is a significant overestimation of the amount of expansion achieved between ClinCheck® and clinical results.


Subject(s)
Molar , Orthodontic Appliances, Removable , Humans , Adult , Cone-Beam Computed Tomography , Foot , Gingiva
5.
Otol Neurotol ; 43(8): 944-949, 2022 09 01.
Article in English | MEDLINE | ID: mdl-35970158

ABSTRACT

OBJECTIVE: The aim of this study was to develop and validate an outcome measure for individuals with motion-provoked dizziness. STUDY DESIGN: Methodological. SETTING: Academic outpatient vestibular and dizziness clinic. PATIENTS/SUBJECTS: Adults with and without motion-provoked dizziness. MAIN OUTCOME MEASURES: Scores from the modified Motion Sensitivity Test (mMST) were compared between those with motion-provoked dizziness and controls without complaints of dizziness to evaluate the validity of the mMST. Intrarater and interrater reliability of the total Motion Sensitivity Quotient scores were assessed. Baseline and discharge total Motion Sensitivity Quotient scores were collected in a group of patients to determine the sensitivity of the mMST to measure change in motion-provoked dizziness after vestibular rehabilitation. RESULTS: A 10-item motion sensitivity test was developed and demonstrated discriminant validity to differentiate patients with motion-provoked dizziness and control subjects without dizziness and demonstrated construct validity compared with the Dizziness Handicap Inventory (r = 0.64, p < 0.001). Internal validity of the mMST was excellent (Cronbach α = 0.95). The mMST demonstrated excellent reliability between raters (intraclass correlation coefficient = 1.00) and test sessions (intraclass correlation coefficient = 0.95). CONCLUSIONS: The results indicated that the mMST can be used reliably in clinical practice to develop exercise programs for patients with motion-provoked dizziness and to provide evidence of intervention efficacy. mMST is a valid, reliable measure to use in the clinic for patients with motion-provoked dizziness.


Subject(s)
Dizziness , Vertigo , Adult , Dizziness/diagnosis , Dizziness/etiology , Humans , Outcome Assessment, Health Care , Reproducibility of Results
6.
Science ; 373(6562): 1528-1531, 2021 Sep 24.
Article in English | MEDLINE | ID: mdl-34554787

ABSTRACT

Archaeologists and researchers in allied fields have long sought to understand human colonization of North America. Questions remain about when and how people migrated, where they originated, and how their arrival affected the established fauna and landscape. Here, we present evidence from excavated surfaces in White Sands National Park (New Mexico, United States), where multiple in situ human footprints are stratigraphically constrained and bracketed by seed layers that yield calibrated radiocarbon ages between ~23 and 21 thousand years ago. These findings confirm the presence of humans in North America during the Last Glacial Maximum, adding evidence to the antiquity of human colonization of the Americas and providing a temporal range extension for the coexistence of early inhabitants and Pleistocene megafauna.


Subject(s)
Fossils , Human Migration , Climate Change , Foot , Geologic Sediments , History, Ancient , Humans , Ice Cover , New Mexico , North America
7.
Gait Posture ; 83: 107-113, 2021 01.
Article in English | MEDLINE | ID: mdl-33129170

ABSTRACT

BACKGROUND: Reduced forward propulsion during gait, measured as the anterior component of the ground reaction force (AGRF), may contribute to slower walking speeds in older adults and gait dysfunction in individuals with neurological impairments. Trailing limb angle (TLA) is a clinically important gait parameter that is associated with AGRF generation. Real-time gait biofeedback can induce modifications in targeted gait parameters, with potential to modulate AGRF and TLA. However, the effects of real-time TLA biofeedback on gait biomechanics have not been studied thus far. RESEARCH QUESTION: What are the effects of unilateral, real-time, audiovisual trailing limb angle biofeedback on gait biomechanics in able-bodied individuals? METHODS: Ten able-bodied adults participated in one session of treadmill-based gait analyses comprising 60-second walking trials under three conditions: no biofeedback, AGRF biofeedback, and TLA biofeedback. Biofeedback was provided unilaterally to the right leg. Dependent variables included AGRF, TLA, ankle moment, and ankle power. One-way repeated measures ANOVA with post-hoc tests were conducted to determine the effect of the biofeedback conditions on gait parameters. RESULTS: Compared to no biofeedback, both AGRF and TLA biofeedback induced significant increases in targeted leg AGRF without concomitant changes to the non-targeted leg AGRF. Targeted leg TLA was significantly larger during TLA biofeedback compared to AGRF biofeedback. Only AGRF biofeedback induced significant increases in ankle power; and only the TLA biofeedback condition induced increases in the non-targeted leg TLA. SIGNIFICANCE: Our novel findings provide support for the feasibility and promise of TLA as a gait biofeedback target. Our study demonstrates that comparable magnitudes of feedback-induced increases in AGRF in response to AGRF and TLA biofeedback may be achieved through divergent biomechanical strategies. Further investigation is needed to uncover the effects of TLA biofeedback on gait parameters in individuals with neuro-pathologies such as spinal cord injury or stroke.


Subject(s)
Biomechanical Phenomena/physiology , Gait/physiology , Walking/physiology , Adult , Biofeedback, Psychology , Female , Humans , Male , Young Adult
8.
Sci Rep ; 9(1): 16470, 2019 11 11.
Article in English | MEDLINE | ID: mdl-31712670

ABSTRACT

Footprint evidence of human-megafauna interactions remains extremely rare in the archaeological and palaeontological records. Recent work suggests ancient playa environments may hold such evidence, though the prints may not be visible. These so-called "ghost tracks" comprise a rich archive of biomechanical and behavioral data that remains mostly unexplored. Here we present evidence for the successful detection and 3-D imaging of such footprints via ground-penetrating radar (GPR), including co-associated mammoth and human prints. Using GPR we have found that track density and faunal diversity may be much greater than realized by the unaided human eye. Our data further suggests that detectable subsurface consolidation below mammoth tracks correlates with typical plantar pressure patterns from extant elephants. This opens future potential for more sophisticated biomechanical studies on the footprints of other extinct land vertebrates. Our approach allows rapid detection and documentation of footprints while enhancing the data available from these fossil archives.

9.
Sci Adv ; 4(4): eaar7621, 2018 04.
Article in English | MEDLINE | ID: mdl-29707640

ABSTRACT

Predator-prey interactions revealed by vertebrate trace fossils are extremely rare. We present footprint evidence from White Sands National Monument in New Mexico for the association of sloth and human trackways. Geologically, the sloth and human trackways were made contemporaneously, and the sloth trackways show evidence of evasion and defensive behavior when associated with human tracks. Behavioral inferences from these trackways indicate prey selection and suggest that humans were harassing, stalking, and/or hunting the now-extinct giant ground sloth in the terminal Pleistocene.


Subject(s)
Archaeology , Paleontology , Sloths , Animals , Fossils , Geology , Humans , North America
10.
Amino Acids ; 48(3): 733-750, 2016 Mar.
Article in English | MEDLINE | ID: mdl-26507545

ABSTRACT

We compared immediate post-exercise whey protein (WP, 500 mg) versus L-leucine (LEU, 54 mg) feedings on skeletal muscle protein synthesis (MPS) mechanisms and ribosome biogenesis markers 3 h following unilateral plantarflexor resistance exercise in male, Wistar rats (~250 g). Additionally, in vitro experiments were performed on differentiated C2C12 myotubes to compare nutrient (i.e., WP, LEU) and 'exercise-like' treatments (i.e., caffeine, hydrogen peroxide, and AICAR) on ribosome biogenesis markers. LEU and WP significantly increased phosphorylated-rpS6 (Ser235/236) in the exercised (EX) leg 2.4-fold (P < 0.01) and 2.7-fold (P < 0.001) compared to the non-EX leg, respectively, whereas vehicle-fed control (CTL) did not (+65 %, P > 0.05). Compared to the non-EX leg, MPS levels increased 32 % and 52 % in the EX leg of CTL (P < 0.01) and WP rats (P < 0.001), respectively, but not in LEU rats (+15 %, P > 0.05). Several genes associated with ribosome biogenesis robustly increased in the EX versus non-EX legs of all treatments; specifically, c-Myc mRNA, Nop56 mRNA, Bop1 mRNA, Ncl mRNA, Npm1 mRNA, Fb1 mRNA, and Xpo-5 mRNA. However, only LEU significantly increased 45S pre-rRNA levels in the EX leg (63 %, P < 0.001). In vitro findings confirmed that 'exercise-like' treatments similarly altered markers of ribosome biogenesis, but only LEU increased 47S pre-rRNA levels (P < 0.01). Collectively, our data suggests that resistance exercise, as well as 'exercise-like' signals in vitro, acutely increase the expression of genes associated with ribosome biogenesis independent of nutrient provision. Moreover, while EX with or without WP appears superior for enhancing translational efficiency (i.e., increasing MPS per unit of RNA), LEU administration (or co-administration) may further enhance ribosome biogenesis over prolonged periods with resistance exercise.


Subject(s)
Leucine/metabolism , Muscle, Skeletal/metabolism , Protein Biosynthesis , Resistance Training , Ribosomes/metabolism , Whey Proteins/metabolism , Animals , Humans , Male , Nuclear Proteins/genetics , Nuclear Proteins/metabolism , Nucleophosmin , Rats , Rats, Wistar , Ribosomal Protein S6/genetics , Ribosomal Protein S6/metabolism , Ribosomes/genetics
11.
Neuropsychopharmacology ; 33(3): 574-87, 2008 Feb.
Article in English | MEDLINE | ID: mdl-17460614

ABSTRACT

The characterization of the first selective orally active and brain-penetrant beta3-adrenoceptor agonist, SR58611A (amibegron), has opened new possibilities for exploring the involvement of this receptor in stress-related disorders. By using a battery of tests measuring a wide range of anxiety-related behaviors in rodents, including the mouse defense test battery, the elevated plus-maze, social interaction, stress-induced hyperthermia, four-plate, and punished drinking tests, we demonstrated for the first time that the stimulation of the beta3 receptor by SR58611A resulted in robust anxiolytic-like effects, with minimal active doses ranging from 0.3 to 10 mg/kg p.o., depending on the procedure. These effects paralleled those obtained with the prototypical benzodiazepine anxiolytic diazepam or chlordiazepoxide. Moreover, when SR58611A was tested in acute or chronic models of depression in rodents, such as the forced-swimming and the chronic mild stress tests, it produced antidepressant-like effects, which were comparable in terms of the magnitude of the effects to those of the antidepressant fluoxetine or imipramine. Supporting these behavioral data, SR58611A modified spontaneous sleep parameters in a manner comparable to that observed with fluoxetine. Importantly, SR58611A was devoid of side effects related to cognition (as shown in the Morris water maze and object recognition tasks), motor activity (in the rotarod), alcohol interaction, or physical dependence. Antagonism studies using pharmacological tools targeting a variety of neurotransmitters involved in anxiety and depression and the use of mice lacking the beta3 adrenoceptor suggested that these effects of SR58611A are mediated by beta3 adrenoceptors. Taken as a whole, these findings indicate that the pharmacological stimulation of beta3 adrenoceptors may represent an innovative approach for the treatment of anxiety and depressive disorders.


Subject(s)
Adrenergic beta-3 Receptor Agonists , Adrenergic beta-Agonists/therapeutic use , Anxiety Disorders/drug therapy , Depressive Disorder/drug therapy , Tetrahydronaphthalenes/therapeutic use , Adrenergic beta-Agonists/administration & dosage , Aggression/drug effects , Animals , Anti-Anxiety Agents/pharmacology , Antidepressive Agents, Second-Generation/pharmacology , Antidepressive Agents, Tricyclic/pharmacology , Anxiety Disorders/psychology , Behavior, Animal/drug effects , Cognition/drug effects , Depressive Disorder/psychology , Diazepam/pharmacology , Ethanol/pharmacology , Exploratory Behavior/drug effects , Fluoxetine/pharmacology , Gerbillinae , Imipramine/pharmacology , Interpersonal Relations , Male , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , Mice, Knockout , Motor Activity/drug effects , Rats , Rats, Long-Evans , Rats, Sprague-Dawley , Rats, Wistar , Receptors, Adrenergic, beta-3/genetics , Sleep/drug effects , Substance-Related Disorders/psychology , Swimming/psychology , Tetrahydronaphthalenes/administration & dosage
12.
Neuropsychopharmacology ; 32(1): 1-16, 2007 Jan.
Article in English | MEDLINE | ID: mdl-17019409

ABSTRACT

In this paper, we report on the pharmacological and functional profile of SSR180711 (1,4-Diazabicyclo[3.2.2]nonane-4-carboxylic acid, 4-bromophenyl ester), a new selective alpha7 acetylcholine nicotinic receptor (n-AChRs) partial agonist. SSR180711 displays high affinity for rat and human alpha7 n-AChRs (K(i) of 22+/-4 and 14+/-1 nM, respectively). Ex vivo (3)[H]alpha-bungarotoxin binding experiments demonstrate that SSR180711 rapidly penetrates into the brain (ID(50)=8 mg/kg p.o.). In functional studies performed with human alpha7 n-AChRs expressed in Xenopus oocytes or GH4C1 cells, the compound shows partial agonist effects (intrinsic activity=51 and 36%, EC(50)=4.4 and 0.9 microM, respectively). In rat cultured hippocampal neurons, SSR180711 induced large GABA-mediated inhibitory postsynaptic currents and small alpha-bungarotoxin sensitive currents through the activation of presynaptic and somato-dendritic alpha7 n-AChRs, respectively. In mouse hippocampal slices, the compound increased the amplitude of both glutamatergic (EPSCs) and GABAergic (IPSCs) postsynaptic currents evoked in CA1 pyramidal cells. In rat and mouse hippocampal slices, a concentration of 0.3 muM of SSR180711 increased long-term potentiation (LTP) in the CA1 field. Null mutation of the alpha7 n-AChR gene totally abolished SSR180711-induced modulation of EPSCs, IPSCs and LTP in mice. Intravenous administration of SSR180711 strongly increased the firing rate of single ventral pallidum neurons, extracellularly recorded in anesthetized rats. In microdialysis experiments, administration of the compound (3-10 mg/kg i.p.) dose-dependently increased extracellular acetylcholine (ACh) levels in the hippocampus and prefrontal cortex of freely moving rats. Together, these results demonstrate that SSR180711 is a selective and partial agonist at human, rat and mouse alpha7 n-AChRs, increasing glutamatergic neurotransmission, ACh release and LTP in the hippocampus.


Subject(s)
Nicotinic Agonists/pharmacology , Nicotinic Agonists/pharmacokinetics , Receptors, Nicotinic/physiology , Animals , Animals, Newborn , Binding Sites/drug effects , Bridged Bicyclo Compounds, Heterocyclic/pharmacology , Cells, Cultured , Dose-Response Relationship, Drug , Drug Interactions , Gene Expression/drug effects , Gene Expression/physiology , Hippocampus/cytology , Humans , In Vitro Techniques , Membrane Potentials/drug effects , Mice , Mice, Inbred C57BL , Mice, Knockout , Neurons/drug effects , Neurons/physiology , Nicotinic Agonists/chemistry , Nicotinic Antagonists/pharmacology , Oocytes/physiology , Patch-Clamp Techniques/methods , Protein Subunits/drug effects , Protein Subunits/physiology , Rats , Rats, Sprague-Dawley , Receptors, Nicotinic/deficiency , Synaptic Transmission/drug effects , Synaptic Transmission/physiology , alpha7 Nicotinic Acetylcholine Receptor , gamma-Aminobutyric Acid/pharmacology
13.
Neuropsychopharmacology ; 32(1): 17-34, 2007 Jan.
Article in English | MEDLINE | ID: mdl-16936709

ABSTRACT

SSR180711 (4-bromophenyl 1,4diazabicyclo(3.2.2) nonane-4-carboxylate, monohydrochloride) is a selective alpha7 nicotinic receptor (n-AChR) partial agonist. Based on the purported implication of this receptor in cognitive deficits associated with schizophrenia, the present study assessed efficacy of SSR180711 (i.p. and p.o.) in different types of learning and memory involved in this pathology. SSR180711 enhanced episodic memory in the object recognition task in rats and mice (MED: 0.3 mg/kg), an effect mediated by the alpha7 n-AChR, as it was no longer seen in mice lacking this receptor. Efficacy was retained after repeated treatment (eight administrations over 5 days, 1 mg/kg), indicating lack of tachyphylaxia. SSR180711 also reversed (MED: 0.3 mg/kg) MK-801-induced deficits in retention of episodic memory in rats (object recognition). The drug reversed (MED: 0.3 mg/kg) selective attention impaired by neonatal phencyclidine (PCP) treatment and restored MK-801- or PCP-induced memory deficits in the Morris or linear maze (MED: 1-3 mg/kg). In neurochemical and electrophysiological correlates of antipsychotic drug action, SSR180711 increased extracellular levels of dopamine in the prefrontal cortex (MED: 1 mg/kg) and enhanced (3 mg/kg) spontaneous firing of retrosplenial cortex neurons in rats. Selectivity of SSR180711 was confirmed as these effects were abolished by methyllycaconitine (3 mg/kg, i.p. and 1 mg/kg, i.v., respectively), a selective alpha7 n-AChR antagonist. Additional antidepressant-like properties of SSR180711 were demonstrated in the forced-swimming test in rats (MED: 1 mg/kg), the maternal separation-induced ultrasonic vocalization paradigm in rat pups (MED: 3 mg/kg) and the chronic mild stress procedure in mice (10 mg/kg o.d. for 3 weeks). Taken together, these findings characterize SSR180711 as a promising new agent for the treatment of cognitive symptoms of schizophrenia. The antidepressant-like properties of SSR180711 are of added interest, considering the high prevalence of depressive symptoms in schizophrenic patients.


Subject(s)
Cognition Disorders/drug therapy , Nicotinic Agonists/therapeutic use , Receptors, Nicotinic/physiology , Analysis of Variance , Animals , Animals, Newborn , Behavior, Animal/drug effects , Cognition Disorders/etiology , Disease Models, Animal , Dizocilpine Maleate/pharmacology , Dopamine/metabolism , Dose-Response Relationship, Drug , Drug Administration Schedule , Drug Interactions , Excitatory Amino Acid Antagonists/pharmacology , Exploratory Behavior/drug effects , Female , Male , Maze Learning/drug effects , Mice , Mice, Inbred C57BL , Mice, Knockout , Phencyclidine/pharmacology , Rats , Rats, Sprague-Dawley , Receptors, Nicotinic/deficiency , Recognition, Psychology/drug effects , Schizophrenia/complications , alpha7 Nicotinic Acetylcholine Receptor
14.
Neuropsychopharmacology ; 30(11): 1963-85, 2005 Nov.
Article in English | MEDLINE | ID: mdl-15956994

ABSTRACT

Noncompetitive N-methyl-D-aspartate (NMDA) blockers induce schizophrenic-like symptoms in humans, presumably by impairing glutamatergic transmission. Therefore, a compound potentiating this neurotransmission, by increasing extracellular levels of glycine (a requisite co-agonist of glutamate), could possess antipsychotic activity. Blocking the glycine transporter-1 (GlyT1) should, by increasing extracellular glycine levels, potentiate glutamatergic neurotransmission. SSR504734, a selective and reversible inhibitor of human, rat, and mouse GlyT1 (IC50=18, 15, and 38 nM, respectively), blocked reversibly the ex vivo uptake of glycine (mouse cortical homogenates: ID50: 5 mg/kg i.p.), rapidly and for a long duration. In vivo, it increased (minimal efficacious dose (MED): 3 mg/kg i.p.) extracellular levels of glycine in the rat prefrontal cortex (PFC). This resulted in an enhanced glutamatergic neurotransmission, as SSR504734 potentiated NMDA-mediated excitatory postsynaptic currents (EPSCs) in rat hippocampal slices (minimal efficacious concentration (MEC): 0.5 microM) and intrastriatal glycine-induced rotations in mice (MED: 1 mg/kg i.p.). It normalized activity in rat models of hippocampal and PFC hypofunctioning (through activation of presynaptic CB1 receptors): it reversed the decrease in electrically evoked [3H]acetylcholine release in hippocampal slices (MEC: 10 nM) and the reduction of PFC neurons firing (MED: 0.3 mg/kg i.v.). SSR504734 prevented ketamine-induced metabolic activation in mice limbic areas and reversed MK-801-induced hyperactivity and increase in EEG spectral energy in mice and rats, respectively (MED: 10-30 mg/kg i.p.). In schizophrenia models, it normalized a spontaneous prepulse inhibition deficit in DBA/2 mice (MED: 15 mg/kg i.p.), and reversed hypersensitivity to locomotor effects of d-amphetamine and selective attention deficits (MED: 1-3 mg/kg i.p.) in adult rats treated neonatally with phencyclidine. Finally, it increased extracellular dopamine in rat PFC (MED: 10 mg/kg i.p.). The compound showed additional activity in depression/anxiety models, such as the chronic mild stress in mice (10 mg/kg i.p.), ultrasonic distress calls in rat pups separated from their mother (MED: 1 mg/kg s.c.), and the increased latency of paradoxical sleep in rats (MED: 30 mg/kg i.p.). In conclusion, SSR504734 is a potent and selective GlyT1 inhibitor, exhibiting activity in schizophrenia, anxiety and depression models. By targeting one of the primary causes of schizophrenia (hypoglutamatergy), it is expected to be efficacious not only against positive but also negative symptoms, cognitive deficits, and comorbid depression/anxiety states.


Subject(s)
Benzamides/pharmacology , Brain Chemistry/drug effects , Enzyme Inhibitors/pharmacology , Glycine Plasma Membrane Transport Proteins/antagonists & inhibitors , Neurons/drug effects , Piperidines/pharmacology , Acetylcholine/metabolism , Action Potentials/drug effects , Amphetamine/pharmacology , Analysis of Variance , Animals , Animals, Newborn , Behavior, Animal/drug effects , Carbon Isotopes/metabolism , Cells, Cultured , Cerebral Cortex/cytology , Circadian Rhythm/drug effects , Dopamine Uptake Inhibitors/pharmacology , Dose-Response Relationship, Drug , Drug Interactions , Enzyme Inhibitors/chemistry , Excitatory Amino Acid Antagonists/pharmacology , Excitatory Postsynaptic Potentials/drug effects , Female , Glycine/metabolism , Hippocampus/cytology , Humans , In Vitro Techniques , Inhibitory Concentration 50 , Male , Mice , Motor Activity/drug effects , Neural Inhibition/drug effects , Neurons/physiology , Patch-Clamp Techniques/methods , Rats , Rats, Sprague-Dawley , Reflex, Startle/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...