Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 21
Filter
Add more filters










Publication year range
1.
Cancer Lett ; 597: 217024, 2024 Jun 12.
Article in English | MEDLINE | ID: mdl-38871244

ABSTRACT

Lysosomes are single membrane bounded group of acidic organelles that can be involved in a process called lysosomal exocytosis which leads to the extracellular release of their content. Lysosomal exocytosis is required for plasma membrane repair or remodeling events such as bone resorption, antigen presentation or mitosis, and for protection against toxic agents such as heavy metals. Recently, it has been showed that to fulfill this protective role, lysosomal exocytosis needs some autophagic proteins, in an autophagy-independent manner. In addition to these crucial physiological roles, lysosomal exocytosis plays a major protumoral role in various cancers. This effect is exerted through tumor microenvironment modifications, including extracellular matrix remodeling, acidosis, oncogenic and profibrogenic signals. This review provides a comprehensive overview of the different elements released in the microenvironment during lysosomal exocytosis, i.e. proteases, exosomes, and protons, and their effects in the context of tumor development and treatment.

2.
Eur J Endocrinol ; 190(3): K27-K31, 2024 Mar 02.
Article in English | MEDLINE | ID: mdl-38430550

ABSTRACT

BACKGROUND: Osteoporosis (OP) is a pathology characterized by bone fragility affecting 30% of postmenopausal women, mainly due to estrogen deprivation and increased oxidative stress. An autophagy involvement is suspected in OP pathogenesis but a definitive proof in humans remains to be obtained. METHODS: Postmenopausal women hospitalized for femoral neck fracture (OP group) or total hip replacement (Control group) were enrolled using very strict exclusion criteria. Western blot was used to analyze autophagy level. RESULTS: The protein expression level of the autophagosome marker LC3-II was significantly decreased in bone of OP patients relative to the control group. In addition, the protein expression of the hormonally upregulated neu-associated kinase (HUNK), which is upregulated by female hormones and promotes autophagy, was also significantly reduced in bone of the OP group. CONCLUSIONS: These results demonstrate for the first time that postmenopausal OP patients have a deficit in bone autophagy level and suggest that HUNK could be the factor linking estrogen loss and autophagy decline. CLINICAL TRIAL REGISTRATION NUMBER: ClinicalTrials.gov Identifier: NCT03175874, 2/6/2017.


Subject(s)
Hip Fractures , Osteoporosis , Humans , Female , Bone Density , Hip Fractures/pathology , Osteoporosis/metabolism , Autophagy , Estrogens
3.
Int J Mol Sci ; 23(9)2022 Apr 25.
Article in English | MEDLINE | ID: mdl-35563121

ABSTRACT

In case of an incident in the nuclear industry or an act of war or terrorism, the dissemination of plutonium could contaminate the environment and, hence, humans. Human contamination mainly occurs via inhalation and/or wounding (and, less likely, ingestion). In such cases, plutonium, if soluble, reaches circulation, whereas the poorly soluble fraction (such as small colloids) is trapped in alveolar macrophages or remains at the site of wounding. Once in the blood, the plutonium is delivered to the liver and/or to the bone, particularly into its mineral part, mostly composed of hydroxyapatite. Countermeasures against plutonium exist and consist of intravenous injections or inhalation of diethylenetetraminepentaacetate salts. Their effectiveness is, however, mainly confined to the circulating soluble forms of plutonium. Furthermore, the short bioavailability of diethylenetetraminepentaacetate results in its rapid elimination. To overcome these limitations and to provide a complementary approach to this common therapy, we developed polymeric analogs to indirectly target the problematic retention sites. We present herein a first study regarding the decontamination abilities of polyethyleneimine methylcarboxylate (structural diethylenetetraminepentaacetate polymer analog) and polyethyleneimine methylphosphonate (phosphonate polymeric analog) directed against Th(IV), used here as a Pu(IV) surrogate, which was incorporated into hydroxyapatite used as a bone model. Our results suggest that polyethylenimine methylphosphonate could be a good candidate for powerful bone decontamination action.


Subject(s)
Actinoid Series Elements , Plutonium , Chelating Agents/chemistry , Decontamination/methods , Durapatite , Humans , Plutonium/chemistry , Polyethyleneimine , Polymers
4.
Joint Bone Spine ; 89(3): 105301, 2022 05.
Article in English | MEDLINE | ID: mdl-34673234

ABSTRACT

Autophagy is a ubiquitous cellular process, allowing the removal and recycling of damaged proteins and organelles. At the basal level, this process plays a role in quality control, thus participating in cellular homeostasis. Autophagy can also be induced by various stresses, such as nutrient deprivation or hypoxia, to allow the cell to survive until conditions improve. In recent years, the role of this process has been widely studied in many pathologies such as neurodegenerative diseases or cancers. In bone tissue, various studies have shown that autophagy is involved in the survival, differentiation and activity of osteoblasts, osteocytes and osteoclasts. The evolution of this knowledge has led to the identification of new molecular pathophysiological mechanisms in bone pathologies. This review reports the current state of knowledge on the role of autophagy in 4 bone diseases: osteoporosis, which seems to be associated with a decrease in autophagy, osteopetrosis and Paget's disease where the course of the autophagic process is disturbed, and finally osteosarcoma where autophagy seems to play a protumoral role. A better understanding of the involvement of autophagy in these pathologies should eventually lead to the identification of new potential therapeutic targets.


Subject(s)
Autophagy , Osteoporosis , Bone and Bones/metabolism , Humans , Osteoblasts , Osteoclasts/metabolism
5.
Arch Toxicol ; 95(3): 1023-1037, 2021 03.
Article in English | MEDLINE | ID: mdl-33426622

ABSTRACT

Uranium is widely spread in the environment due to its natural and anthropogenic occurrences, hence the importance of understanding its impact on human health. The skeleton is the main site of long-term accumulation of this actinide. However, interactions of this metal with biological processes involving the mineralized extracellular matrix and bone cells are still poorly understood. To get a better insight into these interactions, we developed new biomimetic bone matrices containing low doses of natural uranium (up to 0.85 µg of uranium per cm2). These models were characterized by spectroscopic and microscopic approaches before being used as a support for the culture and differentiation of pre-osteoclastic cells. In doing so, we demonstrate that uranium can exert opposite effects on osteoclast resorption depending on its concentration in the bone microenvironment. Our results also provide evidence for the first time that resorption contributes to the remobilization of bone matrix-bound uranium. In agreement with this, we identified, by HRTEM, uranium phosphate internalized in vesicles of resorbing osteoclasts. Thanks to the biomimetic matrices we developed, this study highlights the complex mutual effects between osteoclasts and uranium. This demonstrates the relevance of these 3D models to further study the cellular mechanisms at play in response to uranium storage in bone tissue, and thus better understand the impact of environmental exposure to uranium on human bone health.


Subject(s)
Bone Matrix/drug effects , Models, Biological , Osteoclasts/drug effects , Uranium/metabolism , Animals , Biomimetics , Bone Matrix/metabolism , Bone Resorption/metabolism , Cell Line, Tumor , Humans , Mice , Osteoclasts/metabolism , RAW 264.7 Cells , Tissue Distribution , Uranium/administration & dosage
6.
Cancers (Basel) ; 12(12)2020 Dec 07.
Article in English | MEDLINE | ID: mdl-33297525

ABSTRACT

Cancer stem cells (CSCs) represent a minor population of cancer cells with stem cell-like properties which are able to fuel tumor growth and resist conventional treatments. Autophagy has been described to be upregulated in some CSCs and to play a crucial role by maintaining stem features and promoting resistance to both hostile microenvironments and treatments. Osteosarcoma (OS) is an aggressive bone cancer which mainly affects children and adolescents and autophagy in OS CSCs has been poorly studied. However, this is a very interesting case because autophagy is often deregulated in this cancer. In the present work, we used two OS cell lines showing different autophagy capacities to isolate CSC-enriched populations and to analyze the autophagy in basal and nutrient-deprived conditions. Our results indicate that autophagy is more efficient in CSCs populations compared to the parental cell lines, suggesting that autophagy is a critical process in OS CSCs. We also showed that the antipsychotic drug thioridazine is able to stimulate, and then impair autophagy in both CSC-enriched populations, leading to autosis, a cell death mediated by the Na+/K+ ATPase pump and triggered by dysregulated accumulation of autophagosomes. Taken together, our results indicate that autophagy is very active in OS CSCs and that targeting this pathway to switch their fate from survival to death could provide a novel strategy to eradicate these cells in osteosarcoma.

7.
Cancer Lett ; 490: 143-153, 2020 10 10.
Article in English | MEDLINE | ID: mdl-32634449

ABSTRACT

Autophagy is the major catabolic process in eukaryotic cells for the degradation and recycling of damaged macromolecules and organelles. It plays a crucial role in cell quality control and nutrient supply under stress conditions. Although autophagy is classically described as a degradative mechanism, it can also be involved in some secretion pathways, leading to the extracellular release of proteins, aggregates, or organelles. The role of autophagy in cancer is complex and depends on tumor development stage. While autophagy limits cancer development in the early stages of tumorigenesis, it can also have a protumoral role in more advanced cancers, promoting primary tumor growth and metastatic spread. In addition to its pro-survival role in established tumors, autophagy recently emerged as an active player in the crosstalk between tumor and stromal cells. The aim of this review is to analyze the impact of tumoral autophagy on the microenvironment and conversely the effect of stromal cell autophagy on tumor cells.


Subject(s)
Autophagy/physiology , Neoplasms/pathology , Tumor Microenvironment/physiology , Animals , Humans , Receptor Cross-Talk/physiology , Stromal Cells/pathology
8.
Toxicol Sci ; 170(1): 199-209, 2019 07 01.
Article in English | MEDLINE | ID: mdl-31120128

ABSTRACT

Once absorbed in the body, natural uranium [U(VI)], a radionucleotide naturally present in the environment, is targeted to the skeleton which is the long-term storage organ. We and others have reported the U(VI) negative effects on osteoblasts (OB) and osteoclasts (OC), the main two cell types involved in bone remodeling. In the present work, we addressed the U(VI) effect on osteocytes (OST), the longest living bone cell type and the more numerous (> 90%). These cells, which are embedded in bone matrix and thus are the more prone to U(VI) long-term exposure, are now considered as the chief orchestrators of the bone remodeling process. Our results show that the cytotoxicity index of OST is close to 730 µM, which is about twice the one reported for OB and OC. However, despite this resistance potential, we observed that chronic U(VI) exposure as low as 5 µM led to a drastic decrease of the OST mineralization function. Gene expression analysis showed that this impairment could potentially be linked to an altered differentiation process of these cells. We also observed that U(VI) was able to trigger autophagy, a highly conserved survival mechanism. Extended X-ray absorption fine structure analysis at the U LIII edge of OST cells exposed to U(VI) unambiguously shows the formation of an uranyl phosphate phase in which the uranyl local structure is similar to the one present in Autunite. Thus, our results demonstrate for the first time that OST mineralization function can be affected by U(VI) exposure as low as 5 µM, suggesting that prolonged exposure could alter the central role of these cells in the bone environment.


Subject(s)
Autophagy/drug effects , Gene Expression/drug effects , Organometallic Compounds/toxicity , Osteocytes/drug effects , Uranium/toxicity , Animals , Calcification, Physiologic/drug effects , Calcification, Physiologic/genetics , Cell Culture Techniques , Cell Line , Cell Survival/drug effects , Mice , Osteocytes/metabolism , Osteocytes/ultrastructure
9.
J Bone Oncol ; 16: 100235, 2019 Jun.
Article in English | MEDLINE | ID: mdl-31011524

ABSTRACT

Osteosarcoma (OS) is the most common primary bone tumour in children and adolescents. It is a highly aggressive tumor with a tendency to spread to the lungs, which are the most common site of metastasis. Advanced osteosarcoma patients with metastasis share a poor prognosis. Despite the use of chemotherapy to treat OS, the 5-year overall survival rate for patients has remained unchanged at 65-70% for the past 20 years. In addition, the 5-year survival of patients with a metastatic disease is around 20%, highlighting the need for novel therapeutic targets. Autophagy is an intracellular degradation process which eliminates and recycles damaged proteins and organelles to improve cell lifespan. In the context of cancer, numerous studies have demonstrated that autophagy is used by tumor cells to repress initial steps of carcinogenesis and/or support the survival and growth of established tumors. In osteosarcoma, autophagy appears to be deregulated and could also act both as a pro or anti-tumoral process. In this manuscript, we aim to review these major findings regarding the role of autophagy in osteosarcoma.

10.
J Vis Exp ; (131)2018 01 30.
Article in English | MEDLINE | ID: mdl-29443101

ABSTRACT

Uranium has been shown to interfere with bone physiology and it is well established that this metal accumulates in bone. However, little is known about the effect of natural uranium on the behavior of bone cells. In particular, the impact of uranium on osteoclasts, the cells responsible for the resorption of the bone matrix, is not documented. To investigate this issue, we have established a new protocol using uranyl acetate as a source of natural uranium and the murine RAW 264.7 cell line as a model of osteoclast precursors. Herein, we detailed all the assays required to test uranium cytotoxicity on osteoclast precursors and to evaluate its impact on the osteoclastogenesis and on the resorbing function of mature osteoclasts. The conditions we have developed, in particular for the preparation of uranyl-containing culture media and for the seeding of RAW 264.7 cells allow to obtain reliable and highly reproductive results. Moreover, we have optimized the use of software tools to facilitate the analysis of various parameters such as the size of osteoclasts or the percentage of resorbed matrix.


Subject(s)
Osteoclasts/radiation effects , Osteogenesis/radiation effects , Uranium/pharmacology , Animals , Cell Differentiation/radiation effects , Mice , Osteoclasts/cytology , Osteoclasts/metabolism , RAW 264.7 Cells
12.
Biochim Biophys Acta Gen Subj ; 1861(4): 715-726, 2017 Apr.
Article in English | MEDLINE | ID: mdl-28089586

ABSTRACT

BACKGROUND: Uranium is a naturally occurring radionuclide ubiquitously present in the environment. The skeleton is the main site of uranium long-term accumulation. While it has been shown that natural uranium is able to perturb bone metabolism through its chemical toxicity, its impact on bone resorption by osteoclasts has been poorly explored. Here, we examined for the first time in vitro effects of natural uranium on osteoclasts. METHODS: The effects of uranium on the RAW 264.7 monocyte/macrophage mouse cell line and primary murine osteoclastic cells were characterized by biochemical, molecular and functional analyses. RESULTS: We observed a cytotoxicity effect of uranium on osteoclast precursors. Uranium concentrations in the µM range are able to inhibit osteoclast formation, mature osteoclast survival and mineral resorption but don't affect the expression of the osteoclast gene markers Nfatc1, Dc-stamp, Ctsk, Acp5, Atp6v0a3 or Atp6v0d2 in RAW 274.7 cells. Instead, we observed that uranium induces a dose-dependent accumulation of SQSTM1/p62 during osteoclastogenesis. CONCLUSIONS: We show here that uranium impairs osteoclast formation and function in vitro. The decrease in available precursor cells, as well as the reduced viability of mature osteoclasts appears to account for these effects of uranium. The SQSTM1/p62 level increase observed in response to uranium exposure is of particular interest since this protein is a known regulator of osteoclast formation. A tempting hypothesis discussed herein is that SQSTM1/p62 dysregulation contributes to uranium effects on osteoclastogenesis. GENERAL SIGNIFICANCE: We describe cellular and molecular effects of uranium that potentially affect bone homeostasis.


Subject(s)
Cell Differentiation/drug effects , Osteoclasts/drug effects , Osteogenesis/drug effects , Uranium/adverse effects , Animals , Bone Resorption/genetics , Cell Differentiation/genetics , Cell Line , Cell Survival/drug effects , Cell Survival/genetics , Genetic Markers/genetics , Mice , Osteoclasts/metabolism , Osteogenesis/genetics , RAW 264.7 Cells
13.
Arch Toxicol ; 91(4): 1903-1914, 2017 Apr.
Article in English | MEDLINE | ID: mdl-27585666

ABSTRACT

Natural uranium (U), which is present in our environment, exerts a chemical toxicity, particularly in bone where it accumulates. Generally, U is found at oxidation state +VI in its oxocationic form [Formula: see text] in aqueous media. Although U(VI) has been reported to induce cell death in osteoblasts, the cells in charge of bone formation, the molecular mechanism for U(VI) effects in these cells remains poorly understood. The objective of our study was to explore U(VI) effect at doses ranging from 5 to 600 µM, on mineralization and autophagy induction in the UMR-106 model osteoblastic cell line and to determine U(VI) speciation after cellular uptake. Our results indicate that U(VI) affects mineralization function, even at subtoxic concentrations (<100 µM). The combination of thermodynamic modeling of U with EXAFS data in the culture medium and in the cells clearly indicates the biotransformation of U(VI) carbonate species into a meta-autunite phase upon uptake by osteoblasts. We next assessed U(VI) effect at 100 and 300 µM on autophagy, a survival process triggered by various stresses such as metal exposure. We observed that U(VI) was able to rapidly activate autophagy but an inhibition of the autophagic flux was observed after 24 h. Thus, our results indicate that U(VI) perturbs osteoblastic functions by reducing mineralization capacity. Our study identifies for the first time U(VI) in the form of meta-autunite in mammalian cells. In addition, U(VI)-mediated inhibition of the autophagic flux may be one of the underlying mechanisms leading to the decreased mineralization and the toxicity observed in osteoblasts.


Subject(s)
Autophagy/drug effects , Calcification, Physiologic/drug effects , Osteoblasts/drug effects , Uranium/toxicity , Animals , Cell Line , Cell Line, Tumor , Dose-Response Relationship, Drug , Osteoblasts/metabolism , Osteoblasts/pathology , Osteosarcoma/metabolism , Rats , Thermodynamics , Uranium/administration & dosage
14.
Oncotarget ; 7(41): 66416-66428, 2016 Oct 11.
Article in English | MEDLINE | ID: mdl-27634908

ABSTRACT

Age-related bone loss is associated with an increased oxidative stress which is worsened by estrogen fall during menauposis. This observation has drawn attention to autophagy, a major cellular catabolic process, able to alleviate oxidative stress in osteoblasts (OB) and osteocytes (OST), two key bone cell types. Moreover, an autophagy decline can be associated with aging, suggesting that an age-related autophagy deficiency in OB and/or OST could contribute to skeletal aging and osteoporosis onset.In the present work, autophagy activity was analyzed in OST and OB in male and female mice according to their age and hormonal status. In OST, autophagy decreases with aging in both sexes. In OB, although a 95% decrease in autophagy is observed in OB derived from old females, this activity remains unchanged in males. In addition, while ovariectomy has no effect on OB autophagy levels, orchidectomy appears to stimulate this process. An inverse correlation between autophagy and the oxidative stress level was observed in OB derived from males or females. Finally, using OB-specific autophagy-deficient mice, we showed that autophagy deficiency aggravates the bone loss associated with aging and estrogen deprivation.Taken together, our data indicate that autophagic modulation in bone cells differs according to sex and cell type. The lowering of autophagy in female OB, which is associated with an increased oxidative stress, could play a role in osteoporosis pathophysiology and suggests that autophagy could be a new therapeutic target for osteoporosis in women.


Subject(s)
Autophagy/physiology , Osteoblasts/pathology , Osteoporosis/pathology , Sex Characteristics , Animals , Female , Male , Mice , Osteocytes/pathology
15.
Ageing Res Rev ; 24(Pt B): 206-17, 2015 Nov.
Article in English | MEDLINE | ID: mdl-26318060

ABSTRACT

Autophagy, a major catabolic pathway responsible of the elimination of damaged proteins and organelles, is now recognized as an anti-aging process. In addition to its basal role in cell homeostasis, autophagy is also a stress-responsive mechanism for survival purposes. Here, we review recent literature to highlight the autophagy role in the different bone cell types, i.e., osteoblasts, osteoclasts and osteocytes. We also discuss the effects of autophagy modulators in bone physiology and of bone anabolic compounds in autophagy. Finally, we analyzed studies regarding bone cell autophagy-deficient mouse models to obtain a more general view on how autophagy modulates bone physiology and pathophysiology, particularly during aging.


Subject(s)
Aging/psychology , Autophagy/physiology , Bone and Bones , Animals , Bone Remodeling/physiology , Bone and Bones/pathology , Bone and Bones/physiology , Bone and Bones/physiopathology , Disease Models, Animal , Humans , Mice
16.
Autophagy ; 10(11): 1965-77, 2014.
Article in English | MEDLINE | ID: mdl-25484092

ABSTRACT

Bone remodeling is a tightly controlled mechanism in which osteoblasts (OB), the cells responsible for bone formation, osteoclasts (OC), the cells specialized for bone resorption, and osteocytes, the multifunctional mechanosensing cells embedded in the bone matrix, are the main actors. Increased oxidative stress in OB, the cells producing and mineralizing bone matrix, has been associated with osteoporosis development but the role of autophagy in OB has not yet been addressed. This is the goal of the present study. We first show that the autophagic process is induced in OB during mineralization. Then, using knockdown of autophagy-essential genes and OB-specific autophagy-deficient mice, we demonstrate that autophagy deficiency reduces mineralization capacity. Moreover, our data suggest that autophagic vacuoles could be used as vehicles in OB to secrete apatite crystals. In addition, autophagy-deficient OB exhibit increased oxidative stress and secretion of the receptor activator of NFKB1 (TNFSF11/RANKL), favoring generation of OC, the cells specialized in bone resorption. In vivo, we observed a 50% reduction in trabecular bone mass in OB-specific autophagy-deficient mice. Taken together, our results show for the first time that autophagy in OB is involved both in the mineralization process and in bone homeostasis. These findings are of importance for mineralized tissues which extend from corals to vertebrates and uncover new therapeutic targets for calcified tissue-related metabolic pathologies.


Subject(s)
Autophagy , Bone and Bones/metabolism , Osteoblasts/cytology , Animals , Bone Remodeling , Bone Resorption , Cell Line, Tumor , Female , Green Fluorescent Proteins/metabolism , Homeostasis , Mice , Mice, Transgenic , Microscopy, Confocal , NF-kappa B p50 Subunit/metabolism , Osteoclasts/metabolism , Oxidative Stress , RANK Ligand/metabolism , Rats , X-Ray Microtomography
17.
Nucleic Acids Res ; 38(11): 3655-71, 2010 Jun.
Article in English | MEDLINE | ID: mdl-20185565

ABSTRACT

MSH5 is a MutS-homologous protein required for meiotic DNA recombination. In addition, recent studies suggest that the human MSH5 protein (hMSH5) participates to mitotic recombination and to the cellular response to DNA damage and thus raise the possibility that a tight control of hMSH5 function(s) may be important for genomic stability. With the aim to characterize mechanisms potentially involved in the regulation of hMSH5 activity, we investigated its intracellular trafficking properties. We demonstrate that hMSH5 possesses a CRM1-dependent nuclear export signal (NES) and a nuclear localization signal that participates to its nuclear targeting. Localization analysis of various mutated forms of hMSH5 by confocal microscopy indicates that hMSH5 shuttles between the nucleus and the cytoplasm. We also provide evidence suggesting that hMSH5 stability depends on its subcellular compartmentalization, hMSH5 being much less stable in the nucleus than in the cytoplasm. Together, these data suggest that hMSH5 activity may be regulated by nucleocytoplasmic shuttling and nuclear proteasomal degradation, both of these mechanisms contributing to the control of nuclear hMSH5 content. Moreover, data herein also support that in tissues where both hMSH5 and hMSH4 proteins are expressed, hMSH5 might be retained in the nucleus through masking of its NES by binding of hMSH4.


Subject(s)
Cell Cycle Proteins/chemistry , Cell Cycle Proteins/metabolism , Cell Nucleus/metabolism , Active Transport, Cell Nucleus , Amino Acid Sequence , Base Sequence , Cell Cycle Proteins/analysis , Conserved Sequence , Fatty Acids, Unsaturated/pharmacology , HeLa Cells , Humans , Molecular Sequence Data , Nuclear Export Signals , Nuclear Localization Signals , Proteasome Endopeptidase Complex/metabolism , Protein Transport
18.
Exp Cell Res ; 313(17): 3680-93, 2007 Oct 15.
Article in English | MEDLINE | ID: mdl-17869244

ABSTRACT

MSH4 and MSH5 are members of the MutS homolog family, a conserved group of proteins involved in DNA mismatch correction and homologous recombination. Although several studies have provided compelling evidences suggesting that MSH4 and MSH5 could act together in early and late stages of meiotic recombination, their precise roles are poorly understood and recent findings suggest that the human MSH4 protein may also exert a cytoplasmic function. Here we show that MSH4 is present in the cytoplasm and the nucleus of both testicular cells and transfected somatic cells. Confocal studies on transfected cells provide the first evidence that the subcellular localization of MSH4 is regulated, at least in part, by an active nuclear export pathway dependent on the exportin CRM1. We used deletion mapping and mutagenesis to define two functional nuclear export sequences within the C-terminal part of hMSH4 that mediate nuclear export through the CRM1 pathway. Our results suggest that CRM1 is also involved in MSH5 nuclear export. In addition, we demonstrate that dimerization of MSH4 and MSH5 facilitates their nuclear localization suggesting that dimerization may regulate the intracellular trafficking of these proteins. Our findings suggest that nucleocytoplasmic traffic may constitute a regulatory mechanism for MSH4 and MSH5 functions.


Subject(s)
Cell Cycle Proteins/metabolism , Karyopherins/metabolism , Nuclear Export Signals , Receptors, Cytoplasmic and Nuclear/metabolism , Testis/metabolism , Active Transport, Cell Nucleus/drug effects , Amino Acid Sequence , Animals , Cell Cycle Proteins/analysis , Cell Cycle Proteins/genetics , Cell Nucleus/chemistry , Cell Nucleus/metabolism , Cytoplasm/chemistry , Cytoplasm/metabolism , Dimerization , Fatty Acids, Unsaturated/pharmacology , Humans , Karyopherins/genetics , Male , Mice , Mice, Inbred Strains , Mice, Mutant Strains , Molecular Sequence Data , Nuclear Export Signals/genetics , Protein Structure, Tertiary , Receptors, Cytoplasmic and Nuclear/genetics , Testis/chemistry , Exportin 1 Protein
19.
Mol Hum Reprod ; 10(12): 917-24, 2004 Dec.
Article in English | MEDLINE | ID: mdl-15489243

ABSTRACT

During meiotic prophase, chromosomes must undergo highly regulated recombination events, some of which lead to reciprocal exchanges. In yeast, MSH4, a meiosis-specific homologue of the bacterial MutS protein, is required for meiotic recombination. In mice, disruption of the Msh4 gene results in male and female infertility due to meiotic failure. To date, the implication of MSH4 mutations has not been established in human sterility. However, it is noteworthy that mutant mice exhibit a defect in the chromosome synapsis, strikingly similar to the clinical observations found in human infertility. As a step towards understanding the molecular mechanisms underlying the role of MSH4 in human gametogenesis, we decided to determine whether this protein interacts with recombination machinery enzymes. Our results provide biochemical evidence indicating that the human MSH4 protein physically interacts with both RAD51 and DMC1, two RecA homologues known to initiate DNA strand-exchange between homologous chromosomes. Immunolocalization analyses show that some MSH4 foci, located on mouse meiotic chromosomes, colocalize with DMC1/RAD51 complexes. Our data support the view that MSH4 is associated with the early meiotic recombination machinery in mammals. We consider the possibility that MSH4 is involved in the regulation of recombination events by exerting a function closely after DNA strand-exchange has been initiated.


Subject(s)
Cell Cycle Proteins/metabolism , DNA-Binding Proteins/metabolism , Meiosis/physiology , Animals , Antibodies/immunology , Cell Cycle Proteins/analysis , Cell Cycle Proteins/genetics , Cell Nucleus/chemistry , Cell Nucleus/metabolism , Chromosomes/chemistry , Chromosomes/metabolism , DNA-Binding Proteins/analysis , DNA-Binding Proteins/genetics , Humans , Immunoprecipitation , Male , Meiosis/genetics , Mice , Nuclear Proteins , Phosphate-Binding Proteins , Rad51 Recombinase , Recombination, Genetic/genetics , Recombination, Genetic/physiology , Spermatocytes/chemistry , Spermatocytes/metabolism , Two-Hybrid System Techniques
20.
Med Sci (Paris) ; 19(1): 85-91, 2003 Jan.
Article in French | MEDLINE | ID: mdl-12836196

ABSTRACT

In eukaryotes, homologs of the Escherichia coli MutS and MutL proteins are crucial for both meiotic recombination and post-replicative DNA mismatch repair. Both pathways require the formation of a MutS homolog complex which interacts with a second heterodimer, composed of two MutL homologs. During mammalian meiosis, it is likely that chromosome synapsis requires the presence of a MSH4-MSH5 heterodimer. PMS2, a MutL homolog, seems to play an important role in this process. A MSH4-MSH5 heterodimer is also likely present later with other MutL homologs (MLH1 and MLH3) and is involved in the crossing-over process. The phenotype of msh4-/- mutant mice and MSH4 immunolocalization on meiotic chromosomes suggest that MSH4 has an early function in mammalian meiotic recombination. Both MSH4 and PMS2 directly interact with the RAD51 DNA strand exchange protein. In addition, MSH4 and RAD51 proteins co-localize on mouse meiotic chromosome cores. These results suggest that MSH4 and its partners could act, just after strand exchange promoted by RAD51, to check the homology of DNA heteroduplexes.


Subject(s)
Adenosine Triphosphatases/physiology , Bacterial Proteins , DNA Repair Enzymes , DNA-Binding Proteins/physiology , Mammals/genetics , Meiosis/genetics , Neoplasm Proteins/physiology , Proteins/physiology , Proto-Oncogene Proteins/physiology , Adaptor Proteins, Signal Transducing , Adenosine Triphosphatases/chemistry , Adenosine Triphosphatases/genetics , Animals , Carrier Proteins , Cell Cycle Proteins , Chromosome Segregation/physiology , Crossing Over, Genetic/genetics , DNA-Binding Proteins/chemistry , DNA-Binding Proteins/genetics , Dimerization , Escherichia coli Proteins/physiology , Evolution, Molecular , Female , Humans , Infertility/genetics , Male , Mammals/physiology , Mismatch Repair Endonuclease PMS2 , MutL Protein Homolog 1 , MutL Proteins , MutS DNA Mismatch-Binding Protein , MutS Homolog 2 Protein , MutS Homolog 3 Protein , Neoplasm Proteins/chemistry , Neoplasm Proteins/genetics , Nuclear Proteins , Proteins/chemistry , Proteins/genetics , Proto-Oncogene Proteins/chemistry , Proto-Oncogene Proteins/genetics , Rad51 Recombinase , Recombination, Genetic , Species Specificity
SELECTION OF CITATIONS
SEARCH DETAIL
...