Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Commun ; 14(1): 3866, 2023 06 30.
Article in English | MEDLINE | ID: mdl-37391481

ABSTRACT

Long non-coding RNAs (lncRNAs) are involved in numerous biological processes and are pivotal mediators of the immune response, yet little is known about their properties at the single-cell level. Here, we generate a multi-tissue bulk RNAseq dataset from Ebola virus (EBOV) infected and not-infected rhesus macaques and identified 3979 novel lncRNAs. To profile lncRNA expression dynamics in immune circulating single-cells during EBOV infection, we design a metric, Upsilon, to estimate cell-type specificity. Our analysis reveals that lncRNAs are expressed in fewer cells than protein-coding genes, but they are not expressed at lower levels nor are they more cell-type specific when expressed in the same number of cells. In addition, we observe that lncRNAs exhibit similar changes in expression patterns to those of protein-coding genes during EBOV infection, and are often co-expressed with known immune regulators. A few lncRNAs change expression specifically upon EBOV entry in the cell. This study sheds light on the differential features of lncRNAs and protein-coding genes and paves the way for future single-cell lncRNA studies.


Subject(s)
Ebolavirus , Hemorrhagic Fever, Ebola , RNA, Long Noncoding , Animals , Hemorrhagic Fever, Ebola/genetics , RNA, Long Noncoding/genetics , Macaca mulatta , Ebolavirus/genetics , Virus Internalization
2.
Curr Opin Struct Biol ; 80: 102577, 2023 06.
Article in English | MEDLINE | ID: mdl-37012200

ABSTRACT

Large-scale genomics requires highly scalable and accurate multiple sequence alignment methods. Results collected over this last decade suggest accuracy loss when scaling up over a few thousand sequences. This issue has been actively addressed with a number of innovative algorithmic solutions that combine low-level hardware optimization with novel higher-level heuristics. This review provides an extensive critical overview of these recent methods. Using established reference datasets we conclude that albeit significant progress has been achieved, a unified framework able to consistently and efficiently produce high-accuracy large-scale multiple alignments is still lacking.


Subject(s)
Algorithms , Genomics , Genomics/methods , Amino Acid Sequence , Sequence Alignment , Software
SELECTION OF CITATIONS
SEARCH DETAIL
...