Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 14(1): 4031, 2024 02 18.
Article in English | MEDLINE | ID: mdl-38369518

ABSTRACT

Traditional alcoholic beverages have played a significant role in the cultural, social, and culinary fabric of societies worldwide for centuries. Studying the microbial community structure and their metabolic potential in such beverages is necessary to define product quality, safety, and consistency, as well as to explore associated biotechnological applications. In the present investigation, Illumina-based (MiSeq system) whole-genome shotgun sequencing was utilized to characterize the microbial diversity and conduct predictive gene function analysis of keem, a starter culture employed by the Jaunsari tribal community in India for producing various traditional alcoholic beverages. A total of 8,665,213 sequences, with an average base length of 151 bps, were analyzed using MG-RAST. The analysis revealed the dominance of bacteria (95.81%), followed by eukaryotes (4.11%), archaea (0.05%), and viruses (0.03%). At the phylum level, Actinobacteria (81.18%) was the most abundant, followed by Firmicutes (10.56%), Proteobacteria (4.00%), and Ascomycota (3.02%). The most predominant genera were Saccharopolyspora (36.31%), followed by Brevibacterium (15.49%), Streptomyces (9.52%), Staphylococcus (8.75%), Bacillus (4.59%), and Brachybacterium (3.42%). At the species level, the bacterial, fungal, and viral populations of the keem sample could be categorized into 3347, 57, and 106 species, respectively. Various functional attributes to the sequenced data were assigned using Cluster of Orthologous Groups (COG), Non-supervised Orthologous Groups (NOG), subsystem, and KEGG Orthology (KO) annotations. The most prevalent metabolic pathways included carbohydrate, lipid, and amino acid metabolism, as well as the biosynthesis of glycans, secondary metabolites, and xenobiotic biodegradation. Given the rich microbial diversity and its associated metabolic potential, investigating the transition of keem from a traditional starter culture to an industrial one presents a compelling avenue for future research.


Subject(s)
Microbiota , Microbiota/genetics , Bacteria , Firmicutes/genetics , Archaea/genetics , Metabolic Networks and Pathways
2.
Curr Microbiol ; 80(9): 277, 2023 Jul 11.
Article in English | MEDLINE | ID: mdl-37434070

ABSTRACT

The presence of small amount of soluble forms of Phosphorus (P), Potassium (K) and Zinc (Zn) in most soils is one of the limiting factors for agronomic crop production. The current study focuses on Macrotyloma uniflorum (horse gram or gahat), the most commonly cultivated crop in Uttarakhand. The current initiative and study were started, because there is a little information available on the impact of co-inoculation of beneficial fungi on crops in agricultural fields. Aspergillus niger K7 and Penicillium chrysogenum K4 were isolated and selected for the study on the basis of in vitro P, K and Zn-solubilizing activity. The solubilizing efficiency of K4 strain was 140% and K7 was 173.9% for P. However, the solubilizing efficiencies of K4 and K7 were 160% and 138.46% for Zn and 160% and 466% for K, respectively. The field trials were performed for two consecutive years, and growth and yield related parameters were measured for evaluation of the effect of P, K and Zn-solubilizing fungal strains on the crop. All the treatments showed a significant (P < 0.05) increase in growth and yield of M. uniflorum plants over uninoculated control; however, the best treatment was found to be soil inoculated with P. chrysogenum K4 + A. niger K7 in which the yield was enhanced by 71% over control. Thus, the co-inoculation of K4 and K7 strains showed a great potential to improve the growth and yield of plants. Both the fungal strains simultaneously solubilized three important nutritional elements in soil, which is a rare trait. Moreover, the capacity of these fungal strains to enhance the plant root nodulation and microbial count in soil makes the co-inoculation practice quite beneficial for sustainable agriculture.


Subject(s)
Asteraceae , Fabaceae , Plants, Medicinal , Agriculture , Aspergillus niger
SELECTION OF CITATIONS
SEARCH DETAIL
...