Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
Rev Sci Instrum ; 95(2)2024 Feb 01.
Article in English | MEDLINE | ID: mdl-38341724

ABSTRACT

A 2.45 GHz electron cyclotron resonance (ECR) ion source coupled to a gas-jet skimmer system has been developed for the online production of radioactive ion beams (RIBs). Using radial injection of gas jet in the ion source, RIBs of 11C1+, 11CO21+, and 11CO1+ have been produced online with beam intensity up to about 9 × 103 particles per second for a 1 µA primary proton beam bombarding a nitrogen gas target. The details of the gas jet coupled ECR ion source and the results for stable isotope beams and RIBs are reported.

2.
Nanoscale Adv ; 3(11): 3260-3271, 2021 Jun 01.
Article in English | MEDLINE | ID: mdl-36133658

ABSTRACT

Defect-activated ultrathin graphitic carbon nitride nanosheets (g-C3N4) show an enhanced visible light absorption, better charge-separation, and facile charge transport properties. These are requisites for the designing of an active photocatalyst. Conventional methods used for layer exfoliation and defect activation require strong acids, reducing agents, or ultrasonic treatment for a sufficiently long duration. Furthermore, single-step approaches for layer exfoliation and defect incorporation have hardly been reported. Herein, we have shown atmospheric plasma enabled fabrication of g-C3N4 nanosheets. This approach is simple, low-cost, less time-consuming, and a green approach to exfoliate layers and activate multiple defects concurrently. The protocol involves plasma discharging at an air-water interface at 5 kV for 30-150 min. Atomic force microscopy (AFM) reveals a layer thickness of 96.27 nm in bulk g-C3N4. The thickness becomes 3.78 nm after 150 min of plasma treatment. The exfoliated layers emerge with nitrogen-vacancy sites and self-incorporated defects as probed by positron annihilation spectroscopy (PAS) and X-ray photoelectron spectroscopy (XPS). The defect activated layers show visible light absorption extended up to 600 nm. It is demonstrated that a non-uniform change in the band gap with the plasma treatment time results from quantum confinement in thin layers and Urbach tailing due to defects acting in opposition. Further, steady-state and time-resolved spectroscopy shows the contribution of multiple defect sites for a prolonged lifetime of photoinduced carriers. These defect-activated ultrathin nanosheets of CN serve as an active photocatalyst in the degradation of rhodamine B (RhB) under white LED illumination.

3.
ACS Nano ; 14(12): 16681-16688, 2020 Dec 22.
Article in English | MEDLINE | ID: mdl-33253533

ABSTRACT

Ligand protected atom-precise gold-based catalysts have been utilized in many essential chemical processes, but their mechanism and the fate of the catalyst during reaction are still unrevealed. Atom-precise cluster without ligands are thus highly desirable to maximize atom efficiency, but making these in solution phase is challenging. In this scenario, catalysts with dispersion on oxide support are highly desirable to understand the role of metal core during catalytic reaction. Here, we report the synthesis of Au11(PPh3)7I3 cluster that consists of an incomplete icosahedron core. During its impregnation process on CeO2 support, all of the ligands were removed from the kernel and the Au11 kernel fits into the defects of ceria (embedded onto the oxygen vacancy of ceria (111) plane). This Au11@CeO2 has high atom efficiency and catalytic activity for Ullmann-type C-C homocoupling reactions for electron rich substrates. Density functional theory calculations showed that hexagonal arrangements of Au11 kernel on (111) plane of CeO2 is the most stable one. Theoretical calculations also proved that the atop gold atom has more favorable interaction with phenyl iodide than the second layer gold atoms of the Au11@CeO2. This demonstrated that the present catalyst mimics the single-atom catalyst-like behavior in facilitating the coupling reactions.

4.
Angew Chem Int Ed Engl ; 59(27): 11115-11122, 2020 Jun 26.
Article in English | MEDLINE | ID: mdl-32212363

ABSTRACT

A two-step optimization strategy is used to improve the thermoelectric performance of SnTe via modulating the electronic structure and phonon transport. The electrical transport of self-compensated SnTe (that is, Sn1.03 Te) was first optimized by Ag doping, which resulted in an optimized carrier concentration. Subsequently, Mn doping in Sn1.03-x Agx Te resulted in highly converged valence bands, which improved the Seebeck coefficient. The energy gap between the light and heavy hole bands, i.e. ΔEv decreases to 0.10 eV in Sn0.83 Ag0.03 Mn0.17 Te compared to the value of 0.35 eV in pristine SnTe. As a result, a high power factor of ca. 24.8 µW cm-1 K-2 at 816 K in Sn0.83 Ag0.03 Mn0.17 Te was attained. The lattice thermal conductivity of Sn0.83 Ag0.03 Mn0.17 Te reached to an ultralow value (ca. 0.3 W m-1 K-1 ) at 865 K, owing to the formation of Ag7 Te4 nanoprecipitates in SnTe matrix. A high thermoelectric figure of merit (z T≈1.45 at 865 K) was obtained in Sn0.83 Ag0.03 Mn0.17 Te.

5.
Inorg Chem ; 57(12): 7481-7489, 2018 Jun 18.
Article in English | MEDLINE | ID: mdl-29847926

ABSTRACT

Understanding the complex phenomenon behind the structural transformations is a key requisite to developing important solid-state materials with better efficacy such as transistors, resistive switches, thermoelectrics, etc. AgCuS, a superionic semiconductor, exhibits temperature-dependent p-n-p-type conduction switching and a colossal jump in thermopower during an orthorhombic to hexagonal superionic transition. Tuning of p-n-p-type conduction switching in superionic compounds is fundamentally important to realize the correlation between electronic/phonon dispersion modulation with changes in the crystal structure and bonding, which might contribute to the design of better thermoelectric materials. Herein, we have created extrinsic Ag/Cu nonstoichiometry in AgCuS, which resulted in the vanishing of p-n-p-type conduction switching and improved its thermoelectric properties. We have performed the selective removal of cations and measured their temperature-dependent thermopower and Hall coefficient, which demonstrates only p-type conduction in the Ag1- xCuS and AgCu1- xS samples. The removal of Cu is much more efficient in arresting conduction switching, whereas in the case of Ag vacancy, p-n-p-type conduction switching vanishes at higher vacant concentrations. Positron annihilation spectroscopy measurements have been done to shed further light on the mechanisms behind this structural transition-dependent conduction switching. Cation (Ag+/Cu+) nonstoichiometry in AgCuS significantly increases the vacancy concentration, hence, the p-type carriers, which is confirmed by positron annihilation spectroscopy and Hall measurement. The Ag1- xCuS and AgCu1- xS samples exhibit ultralow thermal conductivity (∼0.3-0.5 W/m·K) in the 290-623 K temperature range because of the low-energy cationic sublattice vibration that arises as a result of the movement of loosely bound Ag/Cu within the stiff S sublattice.

6.
Angew Chem Int Ed Engl ; 57(15): 4043-4047, 2018 04 03.
Article in English | MEDLINE | ID: mdl-29488301

ABSTRACT

Crystalline solids with intrinsically low lattice thermal conductivity (κL ) are crucial to realizing high-performance thermoelectric (TE) materials. Herein, we show an ultralow κL of 0.35 Wm-1 K-1 in AgCuTe, which has a remarkable TE figure-of-merit, zT of 1.6 at 670 K when alloyed with 10 mol % Se. First-principles DFT calculation reveals several soft phonon modes in its room-temperature hexagonal phase, which are also evident from low-temperature heat-capacity measurement. These phonon modes, dominated by Ag vibrations, soften further with temperature giving a dynamic cation disorder and driving the superionic transition. Intrinsic factors cause an ultralow κL in the room-temperature hexagonal phase, while the dynamic disorder of Ag/Cu cations leads to reduced phonon frequencies and mean free paths in the high-temperature rocksalt phase. Despite the cation disorder at elevated temperatures, the crystalline conduits of the rigid anion sublattice give a high power factor.

7.
J Phys Chem Lett ; 8(8): 1745-1751, 2017 Apr 20.
Article in English | MEDLINE | ID: mdl-28345341

ABSTRACT

Organic-inorganic hybrid perovskite has appeared as one of the leading materials for realizing solution-based high-performing optoelectronic devices. The charge transport properties in this class of material are quite intriguing and still need to be carefully investigated. The temperature-dependent electrical property of methylammonium lead iodide (CH3NH3PbI3) has been investigated by employing positron annihilation spectroscopy (PAS), which unambiguously reveals the gradual formation of open volume defects with the enhancement in temperature. The high-temperature ionic conductivity is due to the generation of both cationic (CH3NH3+) and anionic (I-) vacancies, possibly because of the elimination of methylammonium iodide (CH3NH3I) as identified from the coincidence Doppler broadening (CDB) of the positron annihilation spectroscopy. Further, the evolution of temperature-dependent defect density and corresponding electrical responses has been correlated with the structural phase transitions of CH3NH3PbI3. This is the first ever report of temperature-dependent PAS measurement on hybrid lead halide perovskites to understand the nature and the origin of its electrical characteristics arising due to the variation in temperature.

8.
Inorg Chem ; 55(12): 6323-31, 2016 Jun 20.
Article in English | MEDLINE | ID: mdl-27276279

ABSTRACT

Bulk AgBiS2 crystallizes in a trigonal crystal structure (space group, P3̅m1) at room temperature, which transforms to a cation disordered rock salt structure (space group, Fm3̅m) at ∼473 K. Surprisingly, at room temperature, a solution-grown nanocrystal of AgBiS2 crystallizes in a metastable Ag/Bi ordered cubic structure, which transforms to a thermodynamically stable disorded cubic structure at 610 K. Moreover, the order-disorder transition in nanocrystalline AgBiS2 is associated with an unusual change in thermopower. Here, we shed light on the origin of a order-disorder phase transition and the associated anomalous change of thermopower in AgBiS2 nanocrystals by using a combined experimental, density functional theory based first-principles calculation and ab initio molecular dynamics simulations. Positron-annilation spectroscopy indicates the presence of higher numbers of Ag vacancies in the nanocrystal compared to that of the bulk cubic counterpart at room temperature. Furthermore, temperature-dependent two-detector coincidence Doppler broadening spectroscopy and Doppler broadening of the annihilation radiation (S parameter) indicate that the Ag vacancy concentration increases abruptly during the order-disorder transition in nanocrystalline AgBiS2. At high temperature, a Ag atom shuttles between the vacancy and interstitial sites to form a locally disordered cation sublattice in the nanocrystal, which is facilitated by the formation of more Ag vacancies during the phase transition. This process increases the entropy of the system at higher vacancy concentration, which, in turn, results in the unusual rise in thermopower.

9.
Chem Sci ; 7(1): 534-543, 2016 Jan 01.
Article in English | MEDLINE | ID: mdl-29896345

ABSTRACT

Copper and silver based chalcogenides, chalco-halides, and halides form a unique class of semiconductors, as they display mixed ionic and electronic conduction in their superionic phase. These compounds are composed of softly coupled cationic and anionic substructures, and undergo a transition to a superionic phase displaying changes in the substructure of their mobile ions with varying temperature. Here, we demonstrate a facile, ambient and capping agent free solution based synthesis of AgCuS nanocrystals and their temperature dependent (300-550 K) thermoelectric properties. AgCuS is known to show fascinating p-n-p type conduction switching in its bulk polycrystalline form. Temperature dependent synchrotron powder X-ray diffraction, heat capacity and Raman spectroscopy measurements indicate the observation of two superionic phase transitions, from a room temperature ordered orthorhombic (ß) to a partially disordered hexagonal (α) phase at ∼365 K and from the hexagonal (α) to a fully disordered cubic (δ) phase at ∼439 K, in nanocrystalline AgCuS. The size reduction to the nanoscale resulted in a large variation in the thermoelectric properties compared to its bulk counterpart. Temperature dependent Seebeck coefficient measurements indicate that the nanocrystalline AgCuS does not display the p-n-p type conduction switching property like its bulk form, but remains p-type throughout the measured temperature range due to the presence of excess localized Ag vacancies. Nanocrystalline AgCuS exhibits a wider electronic band gap (∼1.2 eV) compared to that of the bulk AgCuS (∼0.9 eV), which is not sufficient to close the band gap to form a semimetallic intermediate state during the orthorhombic to hexagonal superionic phase transition, thus AgCuS nanocrystals do not show conduction type switching properties like their bulk counterpart. The present study demonstrates that ambient solution phase synthesis and size reduction to the nanoscale can tailor the order-disorder phase transition, the band gap and the electronic conduction properties in superionic compounds, which will not only enrich solid-state inorganic chemistry but also open a new avenue to design multifunctional materials.

10.
J Am Chem Soc ; 136(36): 12712-20, 2014 Sep 10.
Article in English | MEDLINE | ID: mdl-25134826

ABSTRACT

Semiconductors have been fundamental to various devices that are typically operated with electric field, such as transistors, memories, sensors, and resistive switches. There is growing interest in the development of novel inorganic materials for use in transistors and semiconductor switches, which can be operated with a temperature gradient. Here, we show that a crystalline semiconducting noble metal sulfide, AgCuS, exhibits a sharp temperature dependent reversible p-n-p type conduction switching, along with a colossal change in the thermopower (ΔS of ~1757 µV K(-1)) at the superionic phase transition (T of ~364 K). In addition, its thermal conductivity is ultralow in 300-550 K range giving AgCuS the ability to maintain temperature gradients. We have developed fundamental understanding of the phase transition and p-n-p type conduction switching in AgCuS through temperature dependent synchrotron powder X-ray diffraction, heat capacity, Raman spectroscopy, and positron annihilation spectroscopy measurements. Using first-principles calculations, we show that this rare combination of properties originates from an effective decoupling of electrical conduction and phonon transport associated with electronic states of the rigid sulfur sublattice and soft vibrations of the disordered cation sublattices, respectively. Temperature dependent p-n-p type conduction switching makes AgCuS an ideal material for diode or transistor devices that operate reversibly on temperature or voltage changes near room temperature.

11.
Rev Sci Instrum ; 78(4): 043303, 2007 Apr.
Article in English | MEDLINE | ID: mdl-17477651

ABSTRACT

A 33.7 MHz heavy-ion radio frequency quadrupole (RFQ) linear accelerator has been designed, built, and tested. It is a four-rod-type RFQ designed for acceleration of 1.38 keVu, qA> or =116 ions to about 29 keVu. Transmission efficiencies of about 85% and 80% have been measured for the unanalyzed and analyzed beams, respectively, of oxygen ((16)O(2+), (16)O(3+), (16)O(4+)), nitrogen ((14)N(3+), (14)N(4+)), and argon ((40)Ar(4+)). The system design and measurements along with results of beam acceleration test will be presented.


Subject(s)
Argon , Electromagnetic Fields , Nitrogen , Oxygen , Particle Accelerators
SELECTION OF CITATIONS
SEARCH DETAIL
...