Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 20
Filter
Add more filters










Publication year range
1.
Biotechnol Bioeng ; 2024 May 06.
Article in English | MEDLINE | ID: mdl-38711222

ABSTRACT

In the past decade, new approaches to the discovery and development of vaccines have transformed the field. Advances during the COVID-19 pandemic allowed the production of billions of vaccine doses per year using novel platforms such as messenger RNA and viral vectors. Improvements in the analytical toolbox, equipment, and bioprocess technology have made it possible to achieve both unprecedented speed in vaccine development and scale of vaccine manufacturing. Macromolecular structure-function characterization technologies, combined with improved modeling and data analysis, enable quantitative evaluation of vaccine formulations at single-particle resolution and guided design of vaccine drug substances and drug products. These advances play a major role in precise assessment of critical quality attributes of vaccines delivered by newer platforms. Innovations in label-free and immunoassay technologies aid in the characterization of antigenic sites and the development of robust in vitro potency assays. These methods, along with molecular techniques such as next-generation sequencing, will accelerate characterization and release of vaccines delivered by all platforms. Process analytical technologies for real-time monitoring and optimization of process steps enable the implementation of quality-by-design principles and faster release of vaccine products. In the next decade, the field of vaccine discovery and development will continue to advance, bringing together new technologies, methods, and platforms to improve human health.

2.
Biologicals ; 78: 17-26, 2022 Jul.
Article in English | MEDLINE | ID: mdl-35840492

ABSTRACT

This online workshop Accelerating Global Deletion of the Abnormal Toxicity Test for vaccines and biologicals. Planning common next steps was organized on October 14th, 2021, by the Animal Free Safety Assessment Collaboration (AFSA), the Humane Society International (HSI), the European Federation of Pharmaceutical Industries and Associations (EFPIA), in collaboration with the International Alliance of Biological Standardization (IABS). The workshop saw a participation of over a hundred representatives from international organizations, pharmaceutical industries and associations, and regulatory authorities of 28 countries. Participants reported on country- and region-specific regulatory requirements and, where present, on the perspectives on the waiving and elimination of the Abnormal Toxicity Test. With AFSA, HSI, EFPIA and IABS representatives as facilitators, the participants also discussed specific country/global actions to further secure the deletion of ATT from all regulatory requirements worldwide.


Subject(s)
Toxicity Tests , Vaccines , Drug Industry , Humans , Reference Standards , Vaccines/adverse effects
3.
NPJ Vaccines ; 7(1): 50, 2022 May 05.
Article in English | MEDLINE | ID: mdl-35513416

ABSTRACT

A potency or potency-indicating assay is a regulatory requirement for the release of every lot of a vaccine. Potency is a critical quality attribute that is also monitored as a stability indicator of a vaccine product. In essence, a potency measurement is a test of the functional integrity of the antigen and is intended to ensure that the antigen retains immunocompetence, i.e., the ability to stimulate the desired immune response, in its final formulation. Despite its central importance, there is incomplete clarity about the definition and expectation of a potency assay. This article provides a perspective on the purpose, value, and challenges associated with potency testing for vaccines produced by new technologies. The focus is on messenger RNA vaccines in the light of experience gained with recombinant protein-based vaccines, which offer the opportunity to directly correlate in vitro antigenicity with in vivo immunogenicity. The challenges with developing immunologically relevant in vitro assays are discussed especially for multivalent vaccine products, the importance of which has been reinforced by the ongoing emergence of SARS-CoV-2 variants of concern. Immunoassay-based release of multivalent vaccine products, such as those containing multiple antigens from different variants or serotypes of the same virus, require antibodies that are selective for each antigen and do not significantly cross-react with the others. In the absence of such exclusively specific antibodies, alternative functional assays with demonstrable correlation to immunogenicity may be acceptable. Initiatives for geographically distributed vaccine technology facilities should include establishing these assay capabilities to enable rapid delivery of vaccines globally.

4.
NPJ Vaccines ; 6(1): 53, 2021 Apr 13.
Article in English | MEDLINE | ID: mdl-33850138

ABSTRACT

The COVID-19 pandemic has prompted hundreds of laboratories around the world to employ traditional as well as novel technologies to develop vaccines against SARS-CoV-2. The hallmarks of a successful vaccine are safety and efficacy. Analytical evaluation methods, that can ensure the high quality of the products and that can be executed speedily, must be in place as an integral component of Chemistry, Manufacturing, and Control (CMC). These methods or assays are developed to quantitatively test for critical quality attributes (CQAs) of a vaccine product. While clinical (human) efficacy of a vaccine can never be predicted from pre-clinical evaluation of CQA, precise and accurate measurements of antigen content and a relevant biological activity (termed "potency") elicited by the antigen allow selection of potentially safe and immunogenic doses for entry into clinical trials. All available vaccine technology platforms, novel and traditional, are being utilized by different developers to produce vaccines against SARS-CoV-2. It took less than a year from the publication of SARS-CoV-2 gene sequence to Emergency Use Authorization (EUA) of the first vaccine, setting a record for speed in the history of vaccine development. The largest ever global demand for vaccines has prompted some vaccine developers to enter multiple manufacturing partnerships in different countries in addition to implementing unprecedented scale-up plans. Quantitative, robust, and rapid analytical testing for CQA of a product is essential in ensuring smooth technology transfer between partners and allowing analytical bridging between vaccine batches used in different clinical phases leading up to regulatory approvals and commercialization. We discuss here opportunities to improve the speed and quality of the critical batch release and characterization assays.

5.
Biologicals ; 68: 92-107, 2020 Nov.
Article in English | MEDLINE | ID: mdl-33041187

ABSTRACT

Transition to in vitro alternative methods from in vivo in vaccine release testing and characterization, the implementation of the consistency approach, and a drive towards international harmonization of regulatory requirements are most pressing needs in the field of vaccines. It is critical for global vaccine community to work together to secure effective progress towards animal welfare and to ensure that vaccines of ever higher quality can reach the populations in need in the shortest possible timeframe. Advancements in the field, case studies, and experiences from Low and Middle Income Countries (LMIC) were the topics discussed by an international gathering of experts during a recent conference titled "Animal Testing for Vaccines - Implementing Replacement, Reduction and Refinement: Challenges and Priorities". This conference was organized by the International Alliance for Biological Standardization (IABS), and held in Bangkok, Thailand on December 3 and 4 2019. Participants comprised stakeholders from many parts of the world, including vaccine developers, manufacturers and regulators from Asia, Europe, North America, Australia and New Zealand. In interactive workshops and vibrant panel discussions, the attendees worked together to identify the remaining barriers to validation, acceptance and implementation of alternative methods, and how harmonization could be promoted, especially for LMICs.


Subject(s)
Animal Testing Alternatives/methods , Vaccination/methods , Vaccines/administration & dosage , Vaccines/immunology , Animal Testing Alternatives/standards , Animal Welfare/standards , Animals , Humans , Quality Control
6.
J Virol ; 94(22)2020 10 27.
Article in English | MEDLINE | ID: mdl-32878888

ABSTRACT

A genetically modified, recombinant form of Newcastle disease virus (rNDV) undergoes ionic strength-dependent changes in morphology, as observed by cryo-electron microscopy (cEM). In hypotonic solutions with ionic strengths ranging from < 0.01 to 0.02 M, rNDV virions are spherical or predominantly spherical. In isotonic and hypertonic solutions, rNDV displays pleomorphism and contains a mixed population of spherical and elongated particles, indicating that a change from spherical to elongated shape is induced with increasing salt concentration. This ionic strength-dependent transition is largely reversible, as determined by cEM. Concomitantly, we measured infectious titers of these same rNDV samples at different ionic strengths using a fluorescent focus assay (FFA). The infectivity of oncolytic rNDV was found to be independent of ionic strength, ranging from 0.01 M to approximately 0.5 M. These structural and functional observations, in combination, suggest that infectivity (and, by inference, oncolytic activity) of rNDV virions is fully maintained in their pleomorphic forms.IMPORTANCE Oncolytic viruses are being developed for cancer therapy, as they selectively target, infect, and kill cancer cells. NDV is particularly attractive because while it is pathogenic to avians (e.g., chickens), it does not cause significant viremia in humans. We have developed a genetically modified recombinant NDV (rNDV) that has much reduced pathogenicity in chickens but is highly oncolytic. The morphology of rNDV transitions from spherical at very low salt concentrations to a heterogeneous population of spherical and elongated virions in isotonic (physiologic salt concentration) and hypertonic solutions. The infectivity (cell-killing activity by infecting cells) of rNDV is unaltered by changes in salt concentration despite morphological changes. These observations are significant for purification and formulation of rNDV, as exposure to different salt concentrations may be needed. Importantly, at physiological salt concentration, relevant to clinical testing, infectivity and, therefore, oncolytic activity will not be compromised despite morphological heterogeneity.


Subject(s)
Newcastle disease virus/genetics , Newcastle disease virus/physiology , Animals , Chickens , Cryoelectron Microscopy , Humans , Newcastle Disease/virology , Newcastle disease virus/ultrastructure , Oncolytic Viruses/genetics , Oncolytic Viruses/physiology , Osmolar Concentration
7.
Biologicals ; 63: 101-105, 2020 Jan.
Article in English | MEDLINE | ID: mdl-31699501

ABSTRACT

This one-day symposium organized by Humane Society International (HSI) brought together 18 international experts from Argentina, Brazil, China, Europe, India, Russia, South Africa and the United States to discuss the elimination of the abnormal toxicity test (ATT) from the testing requirements for human vaccines as well as the target animal batch safety test (TABST) and the laboratory animal batch safety test (LABST) for veterinary vaccines. Participants reported on country-specific regulatory requirements and, where present, the perspectives on waiver and elimination of those tests. In addition, the attendees, with HSI in the role of facilitator, moved to define the barriers to the complete elimination or waiving of these tests. This report expounds the outcomes of the symposium, and introduces a proposed roadmap - populated with country specific activities - for the elimination of these tests.


Subject(s)
Animal Testing Alternatives/standards , Quality Control , Toxicity Tests/standards , Vaccines , Animals , Toxicity Tests/methods , Vaccines/adverse effects , Vaccines/standards , Vaccines/therapeutic use
8.
J Pharm Sci ; 107(9): 2325-2334, 2018 09.
Article in English | MEDLINE | ID: mdl-29883666

ABSTRACT

The effects of 2 squalene-based emulsion adjuvant systems (MedImmune emulsion 0 [ME.0] and Stable Emulsion [SE]) on the structure and stability of the recombinant protein antigen alpha-toxin (AT), a potential vaccine candidate for Staphylococcus aureus infection, were investigated using Fourier-transform infrared spectroscopy and both steady-state and time-resolved intrinsic fluorescence spectroscopy as well as differential scanning calorimetry (DSC). A component study, performed to identify the effects of the individual emulsion's components, showed negligible interactions between AT and ME.0. DSC analysis showed the ME.0 emulsion thermally destabilized AT, probably because of changes in the buffer composition of AT upon mixing. The SE emulsion caused increased alpha-helix and decreased beta-sheet content in AT, and a significant blue shift in the fluorescence spectra relative to that of AT in solution. DSC analysis showed SE exerted a dramatic thermal stabilization effect on AT, probably attributable to an interaction between AT and SE. Size exclusion chromatography showed a complete loss in the recovery of AT when mixed with SE, but not ME.0, indicating a high degree of interaction with SE. This work successfully characterized the biophysical properties of AT in the presence of 2 emulsion adjuvants including a component study to rationalize how emulsion components affect protein antigen stability.


Subject(s)
Adjuvants, Immunologic/chemistry , Bacterial Toxins/chemistry , Emulsions/chemistry , Hemolysin Proteins/chemistry , Hot Temperature , Adjuvants, Immunologic/analysis , Adjuvants, Pharmaceutic/analysis , Adjuvants, Pharmaceutic/chemistry , Bacterial Toxins/analysis , Emulsions/analysis , Hemolysin Proteins/analysis , Hot Temperature/adverse effects , Protein Stability , Spectroscopy, Fourier Transform Infrared/methods , Staphylococcus aureus
9.
Vaccine ; 36(12): 1673-1680, 2018 03 14.
Article in English | MEDLINE | ID: mdl-29456016

ABSTRACT

The post-fusion form of Respiratory Syncytial Virus (RSV) fusion (F) protein has been used recently in clinical trials as a potential vaccine antigen with the objective of eliciting protective immune response against RSV. In this paper, in vitro antigenicity and in vivo immunogenicity of recombinant, soluble F protein of RSV (RSVsF) were evaluated by several assays. In Vitro Relative Potency (IVRP) of RSVsF was measured in a sandwich ELISA using two antibodies, each specific for epitope site A or C. Therefore, IVRP reflected the integrity of the antigen in terms of changes in antibody binding affinity of either or both of these sites. RSVsF samples with a wide range of IVRP values were generated by applying UV irradiation (photo) and high temperature (heat) induced stress for varying lengths of time. These samples were characterized in terms of stress induced modifications in primary and secondary structures as well as aggregation of RSVsF. Immunogenicity, also referred to as In vivo potency, was measured by induction of total F-protein specific IgG and RSV-neutralizing antibodies in mice dosed with these RSVsF samples. Comparison of results between IVRP and these immunogenicity assays revealed that IVRP provided a sensitive read-out of the integrity of epitope sites A and C, and a conservative and reliable evaluation of the potency of RSVsF as a vaccine antigen. This high throughput and fast turn-around assay allowed us to efficiently screen many different RSVsF antigen lots, thereby acting as an effective filter for ensuring high quality antigen that delivered in vivo potency. In vitro and in vivo potencies were further probed at the level of individual epitope sites, A and C. Results of these experiments indicated that site A was relatively resistant to stress induced loss of potency, in vitro or in vivo, compared to site C.


Subject(s)
Antibodies, Monoclonal/immunology , Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , Immunogenicity, Vaccine , Respiratory Syncytial Virus Infections/prevention & control , Respiratory Syncytial Virus, Human/immunology , Viral Fusion Proteins/immunology , Animals , Enzyme-Linked Immunosorbent Assay , Epitopes/immunology , Humans , Immunoglobulin G/immunology , Mice , Neutralization Tests , Stress, Physiological , Vaccines/immunology
10.
J Virol Methods ; 251: 69-74, 2018 01.
Article in English | MEDLINE | ID: mdl-28982603

ABSTRACT

Newcastle Disease Virus (NDV) is an avian paramyxovirus that has no significant pathogenicity in humans. Cancer cells with impaired immune defense mechanisms are susceptible to infection and lysis by NDV. A recombinant construct of a lentogenic form of NDV (rNDV) containing an insertion of granulocyte macrophage colony stimulating factor (GMCSF) transgene was earlier reported and shown to have acceptably low avian pathogenicity as well as oncolytic potential. Reliable measurement of infectious titer is key to determining the effectiveness of virus preparations to infect and lyse cells. We report here a comparative evaluation of two infectious titer assays as applied to rNDV: plaque assay and fluorescent focus assay (FFA). Optimization of assay conditions for both titer methods has produced concordant results spanning several orders of magnitude. While plaque formation is the gold standard measure of virus titer, FFA provides higher throughput and faster turn-around. FFA has been further evaluated on two different instrument platforms, for automated versus manual foci recognition and counting, with equivalent results. These results point to amenability of FFA to transfer between different laboratories and analysts, without introducing significant subjectivity in data analysis.


Subject(s)
Newcastle disease virus/growth & development , Oncolytic Viruses/growth & development , Optical Imaging/methods , Viral Load/methods , Viral Plaque Assay/methods , Animals , Humans
11.
AAPS PharmSciTech ; 18(5): 1595-1604, 2017 Jul.
Article in English | MEDLINE | ID: mdl-27628187

ABSTRACT

Adjuvants are typically used in subunit vaccine formulations to enhance immune responses elicited by individual antigens. Physical chemical characterization of novel adjuvants is an important step in ensuring their effective use in vaccine formulations. This paper reports application of a panel of quantitative assays developed to analyze and characterize an oil-in-water adjuvant emulsion, which contains glucopyranosyl lipid A (GLA) and is a squalene-based emulsion. GLA is a fully synthetic analogue of monophosphoryl lipid A, which is a Toll-like receptor type 4 agonist and an FDA-approved adjuvant. The GLA-stable emulsion (GLA-SE) is currently being used for a respiratory syncytial virus vaccine in a phase 2 clinical trial. GLA was quantitated using reverse-phased high-performance liquid chromatography (RP-HPLC) coupled to a mass spectrometric detector, achieving higher assay sensitivity than the charged aerosol detection routinely used. Quantitation of the excipients of GLA-SE, including squalene, egg phosphatidyl choline, and Poloxamer 188, was achieved using a simple and rapid RP-HPLC method with evaporative light scattering detection, eliminating chemical derivatization typically required for these chromophore-lacking compounds. DL-α-tocopherol, the antioxidant of the GLA-SE, was quantitated using a RP-HPLC method with conventional UV detection. The experimental results compared well with values expected for these compounds based on targeted composition of the adjuvant. The assays were applied to identify degradation of individual components in a GLA-SE sample that degraded into distinct aqueous and oil phases. The methods developed and reported here are effective tools in monitoring physicochemical integrity of the adjuvant, as well as in formulation studies.


Subject(s)
Drug Compounding/methods , Glucosides , Lipid A , Vaccines , Adjuvants, Immunologic/chemistry , Adjuvants, Immunologic/pharmacology , Antioxidants/chemistry , Antioxidants/pharmacology , Chromatography, Liquid/methods , Emulsions/chemistry , Excipients/chemistry , Excipients/pharmacology , Glucosides/chemistry , Glucosides/pharmacology , Lipid A/chemistry , Lipid A/pharmacology , Mass Spectrometry/methods , Vaccine Potency , Vaccines/chemistry , Vaccines/pharmacokinetics , alpha-Tocopherol/chemistry , alpha-Tocopherol/pharmacology
12.
Antimicrob Agents Chemother ; 57(6): 2496-505, 2013 Jun.
Article in English | MEDLINE | ID: mdl-23439634

ABSTRACT

Although ß-lactams have been the most effective class of antibacterial agents used in clinical practice for the past half century, their effectiveness on Gram-negative bacteria has been eroded due to the emergence and spread of ß-lactamase enzymes that are not affected by currently marketed ß-lactam/ß-lactamase inhibitor combinations. Avibactam is a novel, covalent, non-ß-lactam ß-lactamase inhibitor presently in clinical development in combination with either ceftaroline or ceftazidime. In vitro studies show that avibactam may restore the broad-spectrum activity of cephalosporins against class A, class C, and some class D ß-lactamases. Here we describe the structures of two clinically important ß-lactamase enzymes bound to avibactam, the class A CTX-M-15 extended-spectrum ß-lactamase and the class C Pseudomonas aeruginosa AmpC ß-lactamase, which together provide insight into the binding modes for the respective enzyme classes. The structures reveal similar binding modes in both enzymes and thus provide a rationale for the broad-spectrum inhibitory activity of avibactam. Identification of the key residues surrounding the binding pocket allows for a better understanding of the potency of this scaffold. Finally, avibactam has recently been shown to be a reversible inhibitor, and the structures provide insights into the mechanism of avibactam recyclization. Analysis of the ultra-high-resolution CTX-M-15 structure suggests how the deacylation mechanism favors recyclization over hydrolysis.


Subject(s)
Anti-Bacterial Agents/pharmacology , Azabicyclo Compounds/pharmacology , Bacterial Proteins/antagonists & inhibitors , Bacterial Proteins/chemistry , Pseudomonas aeruginosa/drug effects , beta-Lactamase Inhibitors , beta-Lactamases/chemistry , Acylation , Anti-Bacterial Agents/metabolism , Azabicyclo Compounds/chemistry , Azabicyclo Compounds/metabolism , Bacterial Proteins/metabolism , Binding Sites , Crystallization , Humans , Models, Molecular , Molecular Sequence Data , Pseudomonas aeruginosa/enzymology , Structure-Activity Relationship , X-Ray Diffraction , beta-Lactamases/metabolism , beta-Lactams/chemistry , beta-Lactams/metabolism , beta-Lactams/pharmacology
13.
Expert Opin Drug Discov ; 7(4): 327-39, 2012 Apr.
Article in English | MEDLINE | ID: mdl-22458504

ABSTRACT

INTRODUCTION: The bacterial replisome is composed of a large number of enzymes, which work in exquisite coordination to accomplish chromosomal replication. Effective inhibition inside the bacterial cell of any of the 'essential' enzymes of the DNA replication pathway should be detrimental to cell survival. AREAS COVERED: This review covers DNA replication enzymes that have been shown to have a potential for delivering antibacterial compounds or drug candidates including: type II topoisomerases, a clinically validated target family, and DNA ligase, which has yielded inhibitors with in vivo efficacy. A few of the 'replisome' enzymes that are structurally and functionally well characterized and have been subjects of antibacterial discovery efforts are also discussed. EXPERT OPINION: Identification of several essential genes in the bacterial replication pathway raised hopes that targeting these gene products would lead to novel antibacterials. However, none of these novel, single gene targets have delivered antibacterial drug candidates into clinical trials. This lack of productivity may be due to the target properties and inhibitor identification approaches employed. For DNA primase, DNA helicase and other replisome targets, with the exception of DNA ligase, the exploitation of structure for lead generation has not been tested to the same extent that it has for DNA gyrase. Utilization of structural information should be considered to augment HTS efforts and initiate fragment-based lead generation. The complex protein-protein interactions involved in regulation of replication may explain why biochemical approaches have been less productive for some replisome targets than more independently functioning targets such as DNA ligase or DNA gyrase.


Subject(s)
Anti-Bacterial Agents/chemistry , Bacteria/drug effects , DNA Replication/drug effects , Drug Discovery/methods , Nucleic Acid Synthesis Inhibitors/chemistry , Topoisomerase Inhibitors/chemistry , Anti-Bacterial Agents/pharmacology , Bacteria/enzymology , Binding Sites , DNA Helicases/antagonists & inhibitors , DNA Ligases/antagonists & inhibitors , DNA Primase/antagonists & inhibitors , DNA, Bacterial/genetics , High-Throughput Screening Assays , Humans , Nucleic Acid Synthesis Inhibitors/pharmacology , Protein Interaction Domains and Motifs , Topoisomerase II Inhibitors , Topoisomerase Inhibitors/pharmacology
14.
Curr Drug Targets ; 13(3): 388-408, 2012 Mar.
Article in English | MEDLINE | ID: mdl-22206259

ABSTRACT

New antibacterial drugs are urgently needed to combat the growing problem of multidrug resistant bacterial infections. Major advances in bacterial genomics have uncovered many unexploited targets, leading to the possibility of discovering new antibacterials with novel mechanisms that would circumvent resistance. Many of these targets are soluble enzymes that vary in their degrees of mechanistic complexity. Protein crystallography as well as solution based biophysical methods are playing an increasingly important role in selecting, characterizing and validating promising targets as well as identifying and optimizing lead compounds that inhibit their functions. Advances made in recent years in sensitivity, resolution and throughput of biophysical tools are allowing multiple approaches to screening for hits and rational design of leads based on a deeper understanding of structure-activity relationships. However, the path from a lead compound to a safe and efficacious antibacterial drug still remains challenging. Structural and biophysical approaches have had less of an impact on this later phase of discovery than on the lead generation phase.


Subject(s)
Anti-Bacterial Agents/administration & dosage , Biophysical Phenomena/physiology , Drug Delivery Systems/methods , Drug Discovery/methods , Animals , Anti-Bacterial Agents/chemistry , Biophysical Phenomena/drug effects , Crystallography, X-Ray , Humans
15.
Expert Opin Ther Pat ; 19(1): 59-72, 2009 Jan.
Article in English | MEDLINE | ID: mdl-19441898

ABSTRACT

BACKGROUND: Hepatitis B is a DNA virus that can cause liver inflammation, cirrhosis, and cancer in chronically infected and symptomatic carriers. Antiviral treatments are usually limited in their effectiveness in treating the disease states. Vaccination against hepatitis B in pediatric and adolescent populations has proven to be a generally effective means for preventing diseases that could be potentially caused by this virus. Some 5 - 10% of the vaccinees do not develop protective immunity against the virus. Therefore, a significant amount of effort has been made in many research laboratories across the world to increase the potency of the vaccine by various innovative means, e.g., increasing the immunogenicity of the antigen or through introduction of novel adjuvants that elicit strong humoral and cell-mediated immune responses. OBJECTIVES/METHODS: The objective of this review is to highlight publications of significant developments that have been made over the past decade and efforts that are continuing towards producing an improved vaccine. A number of patents that protect novel hepatitis B vaccine formulations, including those claiming novel hepatitis B core antigen formulations and combinations of a vaccine with small molecule therapeutics, are discussed. CONCLUSION: There have been promising developments in the area of new adjuvants and delivery systems. The practical need for reducing the total number of childhood vaccinations has driven development of, and patent filings on, multivalent and combination vaccine formulations in which the hepatitis B vaccine is included as one component. Efforts and some advances have also been made in the critical area of therapeutic application of the vaccine. The existence of a large population of already infected patients and the inadequacy of most of the current antiviral drugs against hepatitis B diseases have also inspired efforts to produce a vaccine that would be efficacious in clearing an exiting infection.


Subject(s)
Hepatitis B Antigens/immunology , Hepatitis B Vaccines/immunology , Hepatitis B/prevention & control , Adjuvants, Immunologic/pharmacology , Adolescent , Adult , Animals , Antiviral Agents/therapeutic use , Child , Drug Design , Drug Therapy, Combination , Hepatitis B/immunology , Hepatitis B/therapy , Hepatitis B Vaccines/administration & dosage , Humans , Patents as Topic
16.
J Pharm Biomed Anal ; 40(3): 528-38, 2006 Feb 24.
Article in English | MEDLINE | ID: mdl-16256286

ABSTRACT

Mass spectrometry (MS) has been applied to drug discovery for many years. With the advent of new ionization techniques, MS has emerged as an important analytical tool in identification and characterization of protein targets, structure elucidation of synthetic compounds, and early drug metabolism and pharmacokinetics studies. Two MS-based strategies, function-based and affinity-based, have been employed in recent years for screening and evaluation of compounds. In the function-based approach, the effects of compounds on the biological activity of a target molecule are measured. In the affinity-based approach, compounds are screened based on their binding affinities to target molecules. The interaction between targets and compounds can be directly evaluated by monitoring the formation of non-covalent target-ligand complexes (direct detection) or indirectly evaluated by detecting the compounds after separating bound compounds from unbound (indirect detection). Various techniques including high performance liquid chromatography (HPLC)-MS, size exclusion chromatography (SEC)-MS, frontal affinity chromatography (FAC)-MS and desorption/ionization on silicon (DIOS)-MS can be applied. The recent advances, relative advantages, and limitations of each MS-based method as a tool in compound screening and compound evaluation in the early stages of drug discovery are discussed in this review.


Subject(s)
Drug Design , Mass Spectrometry , Pharmacology/instrumentation , Animals , Drug Evaluation, Preclinical , Humans , Structure-Activity Relationship
17.
J Pharm Sci ; 94(7): 1538-51, 2005 Jul.
Article in English | MEDLINE | ID: mdl-15929070

ABSTRACT

Human papillomavirus (HPV) virus-like-particles (VLPs) produced by recombinant expression systems are promising vaccine candidates for prevention of cervical cancers as well as genital warts. At high protein concentrations, HPV VLPs, comprised of the viral capsid protein L1 and expressed and purified from yeast, are protected against detectable aggregation during preparation and storage by high concentrations of NaCl. At low protein concentrations, however, high salt concentration alone does not fully protect HPV VLPs from aggregation. Moreover, the analytical analysis of HPV VLPs proved to be a challenge due to surface adsorption of HPV VLPs to storage containers and cuvettes. The introduction of non-ionic surfactants into HPV VLP aqueous solutions provides significantly enhanced stabilization of HPV VLPs against aggregation upon exposure to low salt and protein concentration, as well as protection against surface adsorption and aggregation due to heat stress and physical agitation. The mechanism of non-ionic surfactant stabilization of HPV VLPs was extensively studied using polysorbate 80 (PS80) as a representative non-ionic surfactant. The results suggest that PS80 stabilizes HPV VLPs mainly by competing with the VLPs for various container surfaces and air/water interfaces. No appreciable binding of PS80 to intact HPV VLPs was observed although PS80 does bind to the denatured HPV L1 protein. Even in the presence of stabilizing level of PS80, however, an ionic strength dependence of HPV VLP stabilization against aggregation is observed indicating optimization of both salt and non-ionic surfactant levels is required for effective stabilization of HPV VLPs in solution.


Subject(s)
Papillomaviridae/drug effects , Surface-Active Agents/pharmacology , Calorimetry, Differential Scanning , Light , Nephelometry and Turbidimetry , Scattering, Radiation , Spectrometry, Fluorescence , Surface Properties , Temperature , Ultracentrifugation , Viral Proteins/chemistry
18.
J Pharm Biomed Anal ; 35(4): 817-28, 2004 Jun 29.
Article in English | MEDLINE | ID: mdl-15193726

ABSTRACT

An enzyme activity assay, based on mass spectrometric (MS) detection of specific reaction product following HPLC separation, has been developed to evaluate pharmaceutical hits identified from primary high throughput screening (HTS) against target enzyme Escherichia coli UDP-N-acetyl-muramyl-L-alanine ligase (MurC), an essential enzyme in the bacterial peptidoglycan biosynthetic pathway, and to study the kinetics of the enzyme. A comparative analysis of this new liquid chromatographic-MS (LC-MS) based assay with a conventional spectrophotometric Malachite Green (MG) assay, which detects phosphate produced in the reaction, was performed. The results demonstrated that the LC-MS assay, which determines specific ligase activity of MurC, offers several advantages including a lower background (0.2% versus 26%), higher sensitivity (> or = 10 fold), lower limit of quantitation (LOQ) (0.02 microM versus 1 microM) and wider linear dynamic range (> or = 4 fold) than the MG assay. Good precision for the LC-MS assay was demonstrated by the low intraday and interday coefficient of variation (CV) values (3 and 6%, respectively). The LC-MS assay, free of the artifacts often seen in the Malachite Green assay, offers a valuable secondary assay for hit evaluation in which the false positives from the primary high throughput screening can be eliminated. In addition, the applicability of this assay to the study of enzyme kinetics has also been demonstrated.


Subject(s)
Enzyme Inhibitors/pharmacology , Escherichia coli Proteins/antagonists & inhibitors , Escherichia coli Proteins/metabolism , Peptide Synthases/antagonists & inhibitors , Peptide Synthases/metabolism , Chromatography, Liquid/methods , Dose-Response Relationship, Drug , Drug Evaluation, Preclinical/methods , Enzyme Activation/drug effects , Kinetics , Mass Spectrometry/methods , Sensitivity and Specificity , Substrate Specificity
20.
J Pharm Sci ; 91(4): 1019-35, 2002 Apr.
Article in English | MEDLINE | ID: mdl-11948541

ABSTRACT

A single-shot Hepatitis B vaccine formulation using poly(d,l)-lactide-co-glycolide acid (PLGA) microspheres as a delivery system was examined using a variety of biophysical and biochemical techniques as well as immunological evaluation in C3H mice. PLGA microsphere encapsulation of the Hepatitis B surface antigen (HBsAg), a lipoprotein particle, resulted in good recoveries of protein mass, protein particle conformational integrity, and in vitro antigenicity. Some partial delipidation of the HBsAg, however, was observed. The loading and encapsulation efficiency of HBsAg into the PLGA microspheres were measured along with the morphology and size distribution of the vaccine-loaded PLGA microspheres. The in vitro release kinetics of HBsAg from the PLGA microspheres was evaluated and found to be affected by experimental conditions such as stirring rate. HBsAg showed enhanced storage stability at 37 degrees C in the slightly acidic pH range reported to be found inside PLGA microspheres; thus, the antigen is relatively stable under conditions of temperature and pH that may mimic in vivo conditions. The immunogenicity of the microsphere formulations of HBsAg was compared with conventional aluminum adjuvant formulated HBsAg vaccine in C3H mice. Comparisons were made between aluminum formulations (one and two injections), PLGA microsphere formulations (single injection), and a mixture of aluminum and PLGA microsphere formulations (single injection). The nine-month serum antibody titers indicate that a single injection of a mixture of aluminum and PLGA-formulated HBsAg results in equal or better immune responses than two injections of aluminum-formulated HBsAg vaccine. Based on these in vitro and in vivo studies, it is concluded that HBsAg can be successfully encapsulated and recovered from the PLGA microspheres and a mixture of aluminum-adjuvanted and PLGA-formulated HBsAg can auto-boost an immune response in manner comparable to multiple injections of an aluminum-formulated vaccine.


Subject(s)
Hepatitis B Vaccines/immunology , Hepatitis B Vaccines/pharmacokinetics , Lactic Acid/immunology , Lactic Acid/pharmacokinetics , Polyglycolic Acid/pharmacokinetics , Polymers/pharmacokinetics , Animals , Biocompatible Materials/pharmacokinetics , Chemistry, Pharmaceutical , Circular Dichroism , Delayed-Action Preparations , Dose-Response Relationship, Immunologic , Drug Evaluation, Preclinical , Drug Storage , Hepatitis B Surface Antigens/administration & dosage , Hepatitis B Surface Antigens/chemistry , Hepatitis B Surface Antigens/immunology , Immunization Schedule , Injections, Subcutaneous , Lactic Acid/chemistry , Mice , Mice, Inbred C3H , Microspheres , Polyglycolic Acid/chemistry , Polylactic Acid-Polyglycolic Acid Copolymer , Polymers/chemistry , Spectroscopy, Fourier Transform Infrared
SELECTION OF CITATIONS
SEARCH DETAIL
...