Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 22
Filter
Add more filters










Publication year range
1.
J Phys Chem B ; 128(11): 2745-2754, 2024 Mar 21.
Article in English | MEDLINE | ID: mdl-38447189

ABSTRACT

Monosialoganglioside (GM1), a ubiquitous component of lipid rafts, and hemin, an integral part of heme proteins such as hemoglobin, are essential to the cell membranes of brain neurons and erythrocyte red blood cells for regulating cellular communication and oxygen transport. Protoporphyrin IX (PPIX) and its derivative hemin, on the contrary, show significant cytotoxic effects when in excess causing hematological diseases, such as thalassemia, anemia, malaria, and neurodegeneration. However, the in-depth molecular etiology of their interactions with the cell membrane has so far been poorly understood. Herein, the structure of the polymer cushion-supported lipid bilayer (SLB) of the binary mixture of phospholipid and GM1 in the presence of PPIX and its derivative hemin has been investigated to predict the molecular interactions in model phospholipid membranes. A high-resolution synchrotron-based X-ray scattering technique has been employed to explore the out-of-plane structure of the assembly at different compositions and concentrations. The structural changes have been complemented with the isobaric changes in the mean molecular area obtained from the Langmuir monolayer isotherm to predict the additive-induced membrane condensation and fluidization. PPIX-induced fluidization of phospholipid SLB without GM1 was witnessed, which was reversed to condensation with 2-fold higher structural changes in the presence of GM1. A hemin concentration-dependent linear condensing effect was observed in the pristine SLB. The effect was significantly reduced, and the linearity was observed to be lost in the mixed SLB containing GM1. Our study shows that GM1 alters the interaction of hemin and PPIX with the membrane, which could be explained with the aid of hydrophobic and electrostatic interactions. Our study indicates favorable and unfavorable interactions of GM1 with PPIX and hemin, respectively, in the membrane. The observed structural changes in both SLB and the underlying polymer cushion layer lead to the proposal of a molecule-specific interaction model that can benefit the pharmaceutical industries specialized for drug designing. Our study potentially enriches our fundamental biophysical understanding of neurodegenerative diseases and drug-membrane interactions.


Subject(s)
Phospholipids , Protoporphyrins , Hemin/metabolism , G(M1) Ganglioside/chemistry , Adsorption , Lipid Bilayers/chemistry , Polymers
2.
ACS Nano ; 17(16): 16080-16088, 2023 Aug 22.
Article in English | MEDLINE | ID: mdl-37523736

ABSTRACT

Epitaxially grown self-assembled semiconductor quantum dots (QDs) with atom-like optical properties have emerged as the best choice for single-photon sources required for the development of quantum technology and quantum networks. Nondestructive selection of a single QD having desired structural, compositional, and optical characteristics is essential to obtain noise-free, fully indistinguishable single or entangled photons from single-photon emitters. Here, we show that the structural orientations and local compositional inhomogeneities within a single QD and the surrounding wet layer can be probed in a screening fashion by scanning X-ray diffraction microscopy and X-ray fluorescence with a few tens of nanometers-sized synchrotron radiation beam. The presented measurement protocol can be used to cull the best single QD from the enormous number of self-assembled dots grown simultaneously. The obtained results show that the elemental composition and resultant strain profiles of a QD are sensitive to in-plane crystallographic directions. We also observe that lattice expansion after a certain composition-limit introduces shear strain within a QD, enabling the possibility of controlled chiral-QD formation. Nanoscale chirality and compositional anisotropy, contradictory to common assumptions, need to be incorporated into existing theoretical models to predict the optical properties of single-photon sources and to further tune the epitaxial growth process of self-assembled quantum structures.

3.
J Phys Chem Lett ; 13(49): 11430-11437, 2022 Dec 15.
Article in English | MEDLINE | ID: mdl-36468973

ABSTRACT

Protein isoforms are structural variants with changes in the overall flexibility predominantly at the tertiary level. For membrane associated proteins, such structural flexibility or rigidity affects membrane stability by playing modulatory roles in lipid-protein interaction. Herein, we investigate the protein chain flexibility mediated changes in the mechanistic behavior of phospholipid model membranes in the presence of two well-known isoforms, erythroid (ER) and nonerythroid (NER) spectrin. We show dramatic alterations of membrane elasticity and stability induced by spectrin in the Langmuir monolayers of phosphatidylocholine (PC) and phosphatidylethanolamine (PE) by a combination of isobaric relaxation, surface pressure-area isotherm, X-ray scattering, and microscopy measurements. The NER spectrin drives all monolayers to possess an approximately equal stability, and that required 25-fold increase and 5-fold decrease of stability in PC and PE monolayers, respectively. The untilting transition of the PC membrane in the presence of NER spectrin observed in X-ray measurements can explain better membrane packing and stability.


Subject(s)
Phospholipids , Spectrin , Spectrin/chemistry , Spectrin/metabolism , Spectrin/pharmacology , Phospholipids/chemistry , Membrane Proteins
4.
Small ; 17(51): e2103212, 2021 12.
Article in English | MEDLINE | ID: mdl-34622549

ABSTRACT

Luminescence enhancement in 2D molecular crystals (2D crystals) is promising for a variety of optical applications, yet the availability is limited because of unclear mechanism and inefficient design strategy of luminescence control. Herein, the room temperature phosphorescence from micron long molecular thin free-standing 2D crystals of a mono-cyclometalated Ir(III) complex designed at the water surface is reported. A large luminescence enhancement is observed from the 2D crystals at 300 K, which is comparable with the rigidified solution at 77 K suggesting room temperature phosphorescence origin of the luminescence. In situ synchrotron grazing incidence X-ray diffraction measurements determine the constituent centered rectangular unit cells with precise molecular conformation that promotes the formation of 2D crystals. The molecular crystal design leads to a reduced singlet-triplet energy gap (ΔEST ) and mixing of singlet-triplet states by spin-orbit coupling (SOC) for efficient intersystem crossing, which explains the phosphorescence origin at room temperature and luminescence enhancement. The supramolecular assembly process provides an elegant design strategy to realize room temperature phosphorescence from 2D crystals by rigid intermolecular interactions.


Subject(s)
Luminescence , Molecular Conformation , Temperature
5.
J Phys Condens Matter ; 33(42)2021 Aug 05.
Article in English | MEDLINE | ID: mdl-34311451

ABSTRACT

We investigate the properties of excitons in the SiGe inverted quantum huts (IQHs) embedded in Si employing high-resolution x-ray photoemission spectroscopy. Ultra-small Si/Ge IQHs (13.3 nm × 6.6 nm) were grown on a Si buffer layer deposited on a Si (001) substrate using molecular beam epitaxy. We study the behavior of the excitons at different depths of the IQH structures by exposing the desired surfaces via controlled sputtering and annealing processes. The Si and Ge core level spectra show interesting properties at different surfaces; additionally, we discover distinct new features at the lower binding energy side of the Ge 3dpeak. The emergence of these features is attributed to the final state effects arising from core hole screening by the excitons. The properties of these features in the spectra collected at different locations of the IQHs are found significantly different from each other, indicating the local character of the excitons. These results provide a pathway to study the properties of excitons in such quantum structures. The evidence of the local character of the excitons suggests a type I behavior of the system, which is important for the devices for optoelectronic applications, quantum communications, etc.

6.
Inorg Chem ; 60(4): 2195-2202, 2021 Feb 15.
Article in English | MEDLINE | ID: mdl-33492967

ABSTRACT

We have investigated magneto-structural phase transitions in polycrystalline YVO3 using high-resolution neutron powder diffraction toward understanding the phenomenon of magnetization reversal. Contrary to earlier reports, our study reveals that both C-type and G-type antiferromagnetic ordering, corresponding to G-type and C-type orbital ordered phases, respectively, occur at the same temperature (TN = 115 K) with the G-type antiferromagnetic phase growing at the expense of the C-type one on cooling. These processes cease at TS ∼ 77 K; however, a minor (∼4%) untransformed C-type phase remains unchanged down to 1.7 K. The symmetry analysis indicates different symmetry origins of the Dzyaloshinskii-Moriya interaction in each phase, which can explain the magnetization reversal observed between TN and TS. We discuss that magnetic phase separation and associated weak ferromagnetism may be the common mechanism underlying the magnetization reversal phenomenon observed in other RVO3 systems (R = rare earth).

7.
Langmuir ; 36(50): 15270-15282, 2020 Dec 22.
Article in English | MEDLINE | ID: mdl-33296208

ABSTRACT

The influence of adding nanoparticles on the ascast morphology of spin coated immiscible polystyrene/poly(methyl methacrylate) (PS/PMMA) thin films of different thickness (hE) and composition (RB, volume ratio of PS to PMMA) has been explored in this article. To understand the precise effect of nanoparticle addition, the morphology of PS/PMMA thin blend films spin cast from toluene on a native oxide covered silicon wafer substrate was first investigated. It is seen that in particle free films, the generic morphology of the films remains nearly unaltered with increase in hE, for RB = 3:1 and 1:3. In contrast, strong hE dependent morphology transformation is observed in films with RB = 1:1. Subsequently, thiol-capped gold nanoparticles (AuNP) containing films with different particle concentrations (CNP) were cast from the same solvent along with the polymer mixture. We observe that addition of AuNPs barely alters the generic morphology of the films with RB = 3:1. In contrast, the presence of the particles significantly influences the morphology of the films with RB = 1:1 and 1:3, particularly at higher CNP (≈10.0%). X-ray photoelectron spectroscopy and X-ray reflectivity of some samples reveal that the AuNPs tend to migrate to the free surface through the PS phase, thereby stabilizing this layer partially or fully (depending on CNP) against dewetting over a surface of adsorbed PMMA layer and influencing the ascast morphology as a function of CNP. The work is fundamentally important in understanding largely overlooked implications of nanoparticle addition on the morphology of PS/PMMA blend thin films which forms the fundamental basis for future interesting studies involving dynamics of nanoparticles within the blend thin films.

8.
ACS Nano ; 14(8): 9456-9465, 2020 Aug 25.
Article in English | MEDLINE | ID: mdl-32491827

ABSTRACT

Tuning of crystal structures and shapes of submicrometer-sized noble metals have revealed fascinating catalytic, optical, electrical, and magnetic properties that enable developments of environmentally friendly and durable nanotechnological applications. Several attempts have been made to stabilize Au, knowing its extraordinary stability in its conventional face-centered cubic (fcc) lattice, into different lattices, particularly to develop Au-based catalysis for industry. Here, we report the results from scanning X-ray diffraction microscopy (SXDM) measurements on an ambient-stable penta-twinned bipyramidal Au microcrystallite (about 1.36 µm in length and 230 nm in diameter) stabilized in noncubic lattice, exhibiting catalytic properties. With more than 82% of the crystal volume, the majority crystallite structure is identified as body-centered orthorhombic (bco), while the remainder is the standard fcc. A careful analysis of the diffraction maps reveals that the tips are made up of fcc, while the body contains mainly bco with very high strain. The reported structural imaging technique of representative single crystallite will be useful to investigate the growth mechanism of similar multiphase nano- and micrometer-sized crystals.

9.
ACS Omega ; 5(24): 14555-14563, 2020 Jun 23.
Article in English | MEDLINE | ID: mdl-32596593

ABSTRACT

Grazing incidence X-ray diffraction (GIXD) studies of monolayers of biomolecules at an air-water interface give quantitative information of in-plane packing, coherence length of crystalline domains, etc. Rheo-GIXD measurements can reveal quantitative changes in the nanocrystalline domains of a monolayer under shear. Here, we report GIXD studies of monolayers of alamethicin peptide, DPPC lipid, and their mixtures at an air-water interface under steady shear stress. The alamethicin monolayer and the mixed monolayer show a flow jamming transition. On the other hand, the pure 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) monolayer under constant stress flows steadily with a notable enhancement of the area/molecule and coherence lengths, suggesting the fusion of nanocrystallites during flow. The DPPC-alamethicin mixed monolayer shows no significant change in the area/DPPC molecule, but the coherence lengths of the individual phases (DPPC and alamethicin) increase, suggesting that the crystallites of individual phases grow bigger by merging of domains. More phase separation occurs in the system during flow. Our results show that rheo-GIXD has the potential to explore in situ molecular structural changes under rheological conditions for a diverse range of confined biomolecules at interfaces.

10.
Langmuir ; 35(39): 12630-12635, 2019 Oct 01.
Article in English | MEDLINE | ID: mdl-31532685

ABSTRACT

The air-water interface is an ideal platform to produce two-dimensional (2D) structures involving anything from simple organic molecules to supramolecular moieties by exploiting hydrophobic-hydrophilic interactions. Here, we show, using grazing incidence X-ray scattering, the formation of a 2D ordered structure of a charge-transfer (C-T) complex, namely, dodecyl methyl viologen (DMV) as acceptor and coronene tetracarboxylate potassium salt (CS) as donor, at the air-water interface. We have observed a phase transition in the 2D ordered structure as the area per molecule is decreased with increasing surface pressure in a Langmuir trough. The high-pressure ordering of the hydrocarbon chains associated with DMV destroys long-range C-T conjugation of DMV and CS at the air-water interface. Our results also explain the formation of DMV-CS cylindrical reverse micelles and eventually long nanowires that get formed in the self-assembly process in the bulk medium to preserve both the C-T conjugation and the organic tail-tail organization.

11.
J Phys Condens Matter ; 31(49): 495803, 2019 Dec 11.
Article in English | MEDLINE | ID: mdl-31469093

ABSTRACT

In recent years the ordering of spins in two-dimensions has received considerable attention due to both the fundamental physics interest and for the possible technological applications. Langmuir-Blodgett (LB) films with magnetic ions are ideal systems to study two-dimensional (2D) magnetic ordering as the distances of the magnetic-ions along the out-of-plane and in-plane directions differ by almost an order of magnitude and the effect of the substrate can be neglected. In particular, vortex formation in ferro and antiferro 2D magnetic structures are of current interest and LB films are ideal to study this evolving physics. We show here that 2D magnetic ordering along the in-plane direction of multilayered LB films changes from ferromagnetic to anti-ferromagnetic as the rare-earth magnetic ion is changed from Gadolinium (Gd) to Holmium (Ho). The in-plane magnetization results have shown that Gd based LB films exhibit a temperature dependent saturation moment due to the existence of a vortex structure. The results of the magnetization study presented here show that the Ho based LB films exhibit an in-plane anti-ferromagnetic ordering and the saturation moment is found to be almost independent of temperature indicating the absence of spin vortex structures. From a 1/χ - T plot the asymtotic Curie point θ a and the Neel temperature θ N of the Ho-St LB film were found to be 66 K and 42 K respectively.

12.
RSC Adv ; 9(55): 31900-31910, 2019 Oct 07.
Article in English | MEDLINE | ID: mdl-35530788

ABSTRACT

Copper thiourea complexes are an important material class for application as a precursor of copper sulfide nanocrystals with potential use in solar cells, optoelectronics, medicine, etc. They represent a type of single source precursor, comprising both copper and sulfur in one chemical compound, whose tunable stoichiometry and morphology enable control of the quality and properties of the synthesized copper sulfide nanocrystals. Here, we present a template free electrochemical route to prepare nanowires of copper thiourea (tu) chloride hemihydrate ([Cu(tu)]Cl·½H2O) by pulse deposition. We proposed the model of the growth of nanowires. We also demonstrate complete transformation from the precursor to copper sulfide nanowire by heating it to 180 °C that involves 20% volume loss due to the decomposition of organic constituents; the obtained nanowires have around 38% covellite (CuS) and 62% digenite (Cu1.8S) phases. Electrochemistry offers the advantage of spatially selected deposition e.g. in the active regions of a device.

13.
Sci Rep ; 8(1): 7514, 2018 May 14.
Article in English | MEDLINE | ID: mdl-29760396

ABSTRACT

The understanding of the correlation between structural and photoluminescence (PL) properties of self-assembled semiconductor quantum dots (QDs), particularly InGaAs QDs grown on (001) GaAs substrates, is crucial for both fundamental research and optoelectronic device applications. So far structural and PL properties have been probed from two different epitaxial layers, namely top-capped and buried layers respectively. Here, we report for the first time both structural and PL measurements from an uncapped layer of InGaAs QDs to correlate directly composition, strain and shape of QDs with the optical properties. Synchrotron X-ray scattering measurements show migration of In atom from the apex of QDs giving systematic reduction of height and enlargement of QDs base in the capping process. The optical transitions show systematic reduction in the energy of ground state and the first excited state transition lines with increase in capping but the energy of the second excited state line remain unchanged. We also found that the excitons are confined at the base region of these elliptically shaped QDs showing an interesting volume-dependent confinement energy scaling of 0.3 instead of 0.67 expected for spherical dots. The presented method will help us tuning the growth of QDs to achieve desired optical properties.

14.
Sci Rep ; 7(1): 246, 2017 03 21.
Article in English | MEDLINE | ID: mdl-28325936

ABSTRACT

Self assembled nanofibers derived from donor-acceptor (D-A) pair of dodecyl methyl viologen (DMV) and potassium salt of coronene tetracarboxylate (CS) is an excellent material for the development of organic electronic devices particularly for ultrafast response to relative humidity (RH). Here we have presented the results of in-situ grazing incidence small angle x-ray scattering (GISAXS) measurements to understand aridity dependent self reorganization of the nanofibers. The instantaneous changes in the organization of the nanofibers was monitored with different equilibrium RH conditions. Additionally formation of nanofibers during drying was studied by GISAXS technique - the results show two distinct stages of structural arrangements, first the formation of a lamellar mesophase and then, the evolution of a distorted hexagonal lattice. The RH dependent GISAXS results revealed a high degree of swelling in the lattice of the micelles and reduction in the distortion of the hexagonal structure with increase in RH. In high RH condition, the nanofibers show elliptical distortion but could not break into lamellar phase as observed during formation through drying. This observed structural deformation gives insight into nanoscopic structural changes of the micelles with change in RH around it and in turn explains ultrafast sensitivity in its conductivity for RH variation.

15.
J Phys Condens Matter ; 29(9): 095101, 2017 Mar 08.
Article in English | MEDLINE | ID: mdl-27991441

ABSTRACT

The grazing incidence x-ray scattering results presented here show that the self-assembly process of HgSe nanocrystals formed at a liquid-liquid interface is quite different along the in-plane direction and across the interface. In situ x-ray reflectivity and ex situ microscopy measurements suggest quantized out-of-plane growth for HgSe nanoparticles of a size of about [Formula: see text] nm initially. Grazing incidence small-angle x-ray scattering measurements for films transferred from the water-toluene interface at various stages of reaction show that these nanoparticles first form random clusters with an average radius of 2.2 nm, giving rise to equally spaced rings of several orders. Finally, these clusters self-organize into face-centered cubic superstructures, giving sharp x-ray diffraction peaks oriented normal to the liquid-liquid interface with more than 100 nm-coherent domains. We also observed the x-ray diffraction pattern of the HgSe crystalline phase, with the superlattice peaks in these grazing incidence measurements of the transferred films. The electron microscopy and atomic force microscopy results support the x-ray observation of the self-organization of HgSe nanocrystals into close-packed superlattices. These results show that capillary wave fluctuation promotes the oriented attachment of clusters at the liquid-liquid interface, giving direct experimental evidence of contact epitaxy.

16.
Sci Rep ; 5: 15732, 2015 Oct 28.
Article in English | MEDLINE | ID: mdl-26506865

ABSTRACT

Epitaxial InAs quantum dots grown on GaAs substrate are being used in several applications ranging from quantum communications to solar cells. The growth mechanism of these dots also helps us to explore fundamental aspects of self-organized processes. Here we show that composition and strain profile of the quantum dots can be tuned by controlling in-plane density of the dots over the substrate with the help of substrate-temperature profile. The compositional profile extracted from grazing incidence x-ray measurements show substantial amount of inter-diffusion of Ga and In within the QD as a function of height in the low-density region giving rise to higher variation of lattice parameters. The QDs grown with high in-plane density show much less spread in lattice parameter giving almost flat density of In over the entire height of an average QD and much narrower photoluminescence (PL) line. The results have been verified with three different amounts of In deposition giving systematic variation of the In composition as a function of average quantum dot height and average energy of PL emission.

17.
Langmuir ; 30(20): 5808-16, 2014 May 27.
Article in English | MEDLINE | ID: mdl-24785195

ABSTRACT

X-ray reflectivity, atomic force microscopy, X-ray photoelectron spectroscopy, and contact angle measurement techniques are used to study the structural changeover as a function of concentration of poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide) (PEO-PPO-PEO) triblock copolymer diluted in toluene spin-coated as ultrathin films on hydrophilic Si substrate. A lamellar structure made of three alternating incomplete bilayers is observed until the concentration of copolymer solution attains a threshold value of about 3.6-4 g/L. Around this concentration and beyond, the entanglement of polymer chains takes place during drying and the growth of a homogeneous film made of complete bilayers on Si substrate is observed. The strong hydrophilic nature of the Si substrate dictates the growth of this amphiphilic copolymer. We evidence that the lower part of the films is made of hydrophilic PEO blocks attached to the substrate while the hydrophobic PPO blocks are directed toward air.

18.
J Phys Condens Matter ; 25(39): 395401, 2013 Oct 02.
Article in English | MEDLINE | ID: mdl-23999145

ABSTRACT

We report here the results of a study to understand the formation mechanism of single crystals of the transition metal chalcogenide, CuS, at the water-toluene interface through an interfacial reaction. Systematic measurements carried out using synchrotron x-ray scattering, electron microscopy, atomic force microscopy and calorimetric techniques clearly show that nano-crystallites of CuS form within a few minutes at the interface as the reagents are brought from the organic (upper) and aqueous (lower) layers to the interface, then crystallization of CuS proceeds over a few hours only by reorganization, despite the large excess available in both upper and lower liquid phases. The interface confinement and passivation by organics is critical here in the formation of single crystals having sizes of 6 and 200 nm along the normal and in-plane directions of the liquid-liquid interface.

19.
ACS Nano ; 7(9): 7894-900, 2013 Sep 24.
Article in English | MEDLINE | ID: mdl-23952915

ABSTRACT

Size confinement at nanometer length scales gives rise to many new and tunable properties of organic materials that are absent in their bulk state. Here we report, the appearance of large photoconduction property of a conducting polymer when it forms nanowires. The photoresponse and the external photoconductive gain were found to be >10(5) % and >200%, respectively, even at low bias (<1 V) voltage. These nanowires show a resistance switching transition at low temperature above a threshold bias, and below this transition, the resistance changes by more than 3 orders of magnitude under illumination of light. The photoresponse increases superlinearly and the resistance switching threshold voltage decreases with increasing illumination intensity. These properties are absent in the bulk polymer, and the observed photoresponse is not bolometric or excitonic in nature, nor it can be explained by free carrier generation or Schöttky barrier modulation, rather it is consistent with the photoexcitation of correlated charge carriers.

20.
J Phys Condens Matter ; 22(17): 175301, 2010 May 05.
Article in English | MEDLINE | ID: mdl-21393667

ABSTRACT

The electronic transport properties of ultra-low doped conducting polymer nanowires exhibit characteristics of a pinned one-dimensional Wigner crystal (1D WC) due to the long range electron-electron interaction at low temperature (<30 K). These wires also show characteristics of three-dimensional variable range hopping (3D VRH) at higher temperature. Here we report a resistivity study of these nanowires as a function of the bias around and above 30 K, to show that a crossover takes place from 3D VRH to power law behavior as the bias voltage or current is increased from a low to a relatively high value. The experimental results for this temperature range show several similarities to the theoretically predicted properties of disordered Lüttinger liquid, though at lower temperature the characteristics of the 1D WC are obtained for these nanowires.

SELECTION OF CITATIONS
SEARCH DETAIL
...