Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 38
Filter
Add more filters










Publication year range
1.
Proc Natl Acad Sci U S A ; 121(7): e2316960121, 2024 Feb 13.
Article in English | MEDLINE | ID: mdl-38319964

ABSTRACT

The Ebola virus causes hemorrhagic fever in humans and poses a significant threat to global public health. Although two viral vector vaccines have been approved to prevent Ebola virus disease, they are distributed in the limited ring vaccination setting and only indicated for prevention of infection from orthoebolavirus zairense (EBOV)-one of three orthoebolavirus species that have caused previous outbreaks. Ebola virus glycoprotein GP mediates viral infection and serves as the primary target of neutralizing antibodies. Here, we describe a universal Ebola virus vaccine approach using a structure-guided design of candidates with hyperglycosylation that aims to direct antibody responses away from variable regions and toward conserved epitopes of GP. We first determined the hyperglycosylation landscape on Ebola virus GP and used that to generate hyperglycosylated GP variants with two to four additional glycosylation sites to mask the highly variable glycan cap region. We then created vaccine candidates by displaying wild-type or hyperglycosylated GP variants on ferritin nanoparticles (Fer). Immunization with these antigens elicited potent neutralizing antisera against EBOV in mice. Importantly, we observed consistent cross-neutralizing activity against Bundibugyo virus and Sudan virus from hyperglycosylated GP-Fer with two or three additional glycans. In comparison, elicitation of cross-neutralizing antisera was rare in mice immunized with wild-type GP-Fer. These results demonstrate a potential strategy to develop universal Ebola virus vaccines that confer cross-protective immunity against existing and emerging filovirus species.


Subject(s)
Ebola Vaccines , Ebolavirus , Hemorrhagic Fever, Ebola , Viral Vaccines , Humans , Animals , Mice , Antibodies, Viral , Antibodies, Neutralizing , Immune Sera
2.
Nat Chem Biol ; 2024 Jan 15.
Article in English | MEDLINE | ID: mdl-38225471

ABSTRACT

A major challenge in creating universal influenza vaccines is to focus immune responses away from the immunodominant, variable head region of hemagglutinin (HA-head) and toward the evolutionarily conserved stem region (HA-stem). Here we introduce an approach to control antigen orientation via site-specific insertion of aspartate residues that facilitates antigen binding to alum. We demonstrate the generalizability of this approach with antigens from Ebola, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and influenza viruses and observe enhanced neutralizing antibody responses in all cases. We then reorient an H2 HA in an 'upside-down' configuration to increase the exposure and immunogenicity of HA-stem. The reoriented H2 HA (reoH2HA) on alum induced stem-directed antibodies that cross-react with both group 1 and group 2 influenza A subtypes. Electron microscopy polyclonal epitope mapping (EMPEM) revealed that reoH2HA (group 1) elicits cross-reactive antibodies targeting group 2 HA-stems. Our results highlight antigen reorientation as a generalizable approach for designing epitope-focused vaccines.

4.
bioRxiv ; 2023 Oct 17.
Article in English | MEDLINE | ID: mdl-37904982

ABSTRACT

Ebola virus causes hemorrhagic fever in humans and poses a significant threat to global public health. Although two viral vector vaccines have been approved to prevent Ebola virus disease, they are distributed in the limited ring vaccination setting and only indicated for prevention of infection from orthoebolavirus zairense (EBOV) - one of three orthoebolavirus species that have caused previous outbreaks. Ebola virus glycoprotein GP mediates viral infection and serves as the primary target of neutralizing antibodies. Here we describe a universal Ebola virus vaccine approach using structure-guided design of candidates with hyperglycosylation that aims to direct antibody responses away from variable regions and toward conserved epitopes of GP. We first determined the hyperglycosylation landscape on Ebola virus GP and used that to generate hyperglycosylated GP variants with two to four additional glycosylation sites to mask the highly variable glycan cap region. We then created vaccine candidates by displaying wild-type or hyperglycosylated GP variants on ferritin nanoparticles (Fer). Immunization with these antigens elicited potent neutralizing antisera against EBOV in mice. Importantly, we observed consistent cross-neutralizing activity against Bundibugyo virus and Sudan virus from hyperglycosylated GP-Fer with two or three additional glycans. In comparison, elicitation of cross-neutralizing antisera was rare in mice immunized with wild-type GP-Fer. These results demonstrate a potential strategy to develop universal Ebola virus vaccines that confer cross-protective immunity against existing and emerging filovirus species.

5.
Vaccine ; 41(44): 6502-6513, 2023 Oct 20.
Article in English | MEDLINE | ID: mdl-37620203

ABSTRACT

The development of safe and effective second-generation COVID-19 vaccines to improve affordability and storage stability requirements remains a high priority to expand global coverage. In this report, we describe formulation development and comparability studies with a self-assembled SARS-CoV-2 spike ferritin nanoparticle vaccine antigen (called DCFHP), when produced in two different cell lines and formulated with an aluminum-salt adjuvant (Alhydrogel, AH). Varying levels of phosphate buffer altered the extent and strength of antigen-adjuvant interactions, and these formulations were evaluated for their (1) in vivo performance in mice and (2) in vitro stability profiles. Unadjuvanted DCFHP produced minimal immune responses while AH-adjuvanted formulations elicited greatly enhanced pseudovirus neutralization titers independent of ∼100%, ∼40% or ∼10% of the DCFHP antigen adsorbed to AH. These formulations differed, however, in their in vitro stability properties as determined by biophysical studies and a competitive ELISA for measuring ACE2 receptor binding of AH-bound antigen. Interestingly, after one month of 4°C storage, small increases in antigenicity with concomitant decreases in the ability to desorb the antigen from the AH were observed. Finally, we performed a comparability assessment of DCFHP antigen produced in Expi293 and CHO cells, which displayed expected differences in their N-linked oligosaccharide profiles. Despite consisting of different DCFHP glycoforms, these two preparations were highly similar in their key quality attributes including molecular size, structural integrity, conformational stability, binding to ACE2 receptor and mouse immunogenicity profiles. Taken together, these studies support future preclinical and clinical development of an AH-adjuvanted DCFHP vaccine candidate produced in CHO cells.

6.
bioRxiv ; 2023 Jun 29.
Article in English | MEDLINE | ID: mdl-37425802

ABSTRACT

With the SARS-CoV-2 virus still circulating and evolving, there remains an outstanding question if variant-specific vaccines represent the optimal path forward, or if other strategies might be more efficacious towards providing broad protection against emerging variants. Here, we examine the efficacy of strain-specific variants of our previously reported, pan-sarbecovirus vaccine candidate, DCFHP-alum, a ferritin nanoparticle functionalized with an engineered form of the SARS-CoV-2 spike protein. In non-human primates, DCFHP-alum elicits neutralizing antibodies against all known VOCs that have emerged to date and SARS-CoV-1. During development of the DCFHP antigen, we investigated the incorporation of strain-specific mutations from the major VOCs that had emerged to date: D614G, Epsilon, Alpha, Beta, and Gamma. Here, we report the biochemical and immunological characterizations that led us to choose the ancestral Wuhan-1 sequence as the basis for the final DCFHP antigen design. Specifically, we show by size exclusion chromatography and differential scanning fluorimetry that mutations in the VOCs adversely alter the antigen's structure and stability. More importantly, we determined that DCFHP without strain-specific mutations elicits the most robust, cross-reactive response in both pseudovirus and live virus neutralization assays. Our data suggest potential limitations to the variant-chasing approach in the development of protein nanoparticle vaccines, but also have implications for other approaches including mRNA-based vaccines.

7.
bioRxiv ; 2023 Apr 04.
Article in English | MEDLINE | ID: mdl-37066156

ABSTRACT

The development of safe and effective second-generation COVID-19 vaccines to improve affordability and storage stability requirements remains a high priority to expand global coverage. In this report, we describe formulation development and comparability studies with a self-assembled SARS-CoV-2 spike ferritin nanoparticle vaccine antigen (called DCFHP), when produced in two different cell lines and formulated with an aluminum-salt adjuvant (Alhydrogel, AH). Varying levels of phosphate buffer altered the extent and strength of antigen-adjuvant interactions, and these formulations were evaluated for their (1) in vivo performance in mice and (2) in vitro stability profiles. Unadjuvanted DCFHP produced minimal immune responses while AH-adjuvanted formulations elicited greatly enhanced pseudovirus neutralization titers independent of ∼100%, ∼40% or ∼10% of the DCFHP antigen adsorbed to AH. These formulations differed, however, in their in vitro stability properties as determined by biophysical studies and a competitive ELISA for measuring ACE2 receptor binding of AH-bound antigen. Interestingly, after one month of 4°C storage, small increases in antigenicity with concomitant decreases in the ability to desorb the antigen from the AH were observed. Finally, we performed a comparability assessment of DCFHP antigen produced in Expi293 and CHO cells, which displayed expected differences in their N-linked oligosaccharide profiles. Despite consisting of different DCFHP glycoforms, these two preparations were highly similar in their key quality attributes including molecular size, structural integrity, conformational stability, binding to ACE2 receptor and mouse immunogenicity profiles. Taken together, these studies support future preclinical and clinical development of an AH-adjuvanted DCFHP vaccine candidate produced in CHO cells.

8.
Nat Commun ; 14(1): 2149, 2023 04 17.
Article in English | MEDLINE | ID: mdl-37069151

ABSTRACT

While the rapid development of COVID-19 vaccines has been a scientific triumph, the need remains for a globally available vaccine that provides longer-lasting immunity against present and future SARS-CoV-2 variants of concern (VOCs). Here, we describe DCFHP, a ferritin-based, protein-nanoparticle vaccine candidate that, when formulated with aluminum hydroxide as the sole adjuvant (DCFHP-alum), elicits potent and durable neutralizing antisera in non-human primates against known VOCs, including Omicron BQ.1, as well as against SARS-CoV-1. Following a booster ~one year after the initial immunization, DCFHP-alum elicits a robust anamnestic response. To enable global accessibility, we generated a cell line that can enable production of thousands of vaccine doses per liter of cell culture and show that DCFHP-alum maintains potency for at least 14 days at temperatures exceeding standard room temperature. DCFHP-alum has potential as a once-yearly (or less frequent) booster vaccine, and as a primary vaccine for pediatric use including in infants.


Subject(s)
COVID-19 , Geranium , Nanoparticles , Animals , Humans , COVID-19 Vaccines , Ferritins , COVID-19/prevention & control , SARS-CoV-2 , Immune Sera , Primates , Antibodies, Neutralizing , Antibodies, Viral
9.
Biochemistry ; 62(2): 292-299, 2023 01 17.
Article in English | MEDLINE | ID: mdl-35960597

ABSTRACT

Ferritin-based, self-assembling protein nanoparticle vaccines are being developed against a range of viral pathogens, including SARS-CoV-2, influenza, HIV-1, and Epstein-Barr virus. However, purification of these nanoparticles is often laborious and requires customization for each potential nanoparticle vaccine. We propose that the simple insertion of a polyhistidine tag into exposed flexible loops on the ferritin surface (His-Fer) can mitigate the need for complex purifications and enable facile metal-chelate-based purification, thereby allowing for optimization of early stage vaccine candidates. Using sequence homology and computational modeling, we identify four sites that can accommodate insertion of a polyhistidine tag and demonstrate purification of both hemagglutinin-modified and SARS-CoV-2 spike-modified ferritins, highlighting the generality of the approach. A site at the 4-fold axis of symmetry enables optimal purification of both protein nanoparticles. We demonstrate improved purification through modulating the polyhistidine length and optimizing both the metal cation and the resin type. Finally, we show that purified His-Fer proteins remain multimeric and elicit robust immune responses similar to those of their wild-type counterparts. Collectively, this work provides a simplified purification scheme for ferritin-based vaccines.


Subject(s)
COVID-19 , Ferritins , Nanoparticles , Vaccine Development , Humans , Antibodies, Neutralizing , COVID-19/prevention & control , Ferritins/chemistry , Glycoproteins/chemistry , SARS-CoV-2 , Spike Glycoprotein, Coronavirus/chemistry
10.
Proc Natl Acad Sci U S A ; 119(40): e2207805119, 2022 10 04.
Article in English | MEDLINE | ID: mdl-36161911

ABSTRACT

Tmem95 encodes a sperm acrosomal membrane protein, whose knockout has a male-specific sterility phenotype in mice. Tmem95 knockout murine sperm can bind to, but do not fuse with, eggs. How TMEM95 plays a role in membrane fusion of sperm and eggs has remained elusive. Here, we utilize a sperm penetration assay as a model system to investigate the function of human TMEM95. We show that human TMEM95 binds to hamster egg membranes, providing evidence for a TMEM95 receptor on eggs. Using X-ray crystallography, we reveal an evolutionarily conserved, positively charged region of TMEM95 as a putative receptor-binding surface. Amino acid substitutions within this region of TMEM95 ablate egg-binding activity. We identify monoclonal antibodies against TMEM95 that reduce the number of human sperm fused with hamster eggs in sperm penetration assays. Strikingly, these antibodies do not block binding of sperm to eggs. Taken together, these results provide strong evidence for a specific, receptor-mediated interaction of sperm TMEM95 with eggs and suggest that this interaction may have a role in facilitating membrane fusion during fertilization.


Subject(s)
Infertility, Male , Membrane Fusion , Membrane Proteins , Ovum , Seminal Plasma Proteins , Sperm-Ovum Interactions , Spermatozoa , Amino Acid Substitution , Animals , Antibodies, Monoclonal , Cricetinae , Humans , Infertility, Male/metabolism , Male , Membrane Proteins/genetics , Membrane Proteins/metabolism , Ovum/metabolism , Semen/metabolism , Seminal Plasma Proteins/genetics , Seminal Plasma Proteins/metabolism , Spermatozoa/metabolism
11.
ACS Chem Biol ; 17(5): 1184-1196, 2022 05 20.
Article in English | MEDLINE | ID: mdl-35412807

ABSTRACT

Vaccine scaffolds and carrier proteins increase the immunogenicity of subunit vaccines. Here, we developed, characterized, and demonstrated the efficacy of a novel microparticle vaccine scaffold comprised of bacterial peptidoglycan (PGN), isolated as an entire sacculi. The PGN microparticles contain bio-orthogonal chemical handles allowing for site-specific attachment of immunogens. We first evaluated the purification, integrity, and immunogenicity of PGN microparticles derived from a variety of bacterial species. We then optimized PGN microparticle modification conditions; Staphylococcus aureus PGN microparticles containing azido-d-alanine yielded robust conjugation to immunogens. We then demonstrated that this vaccine scaffold elicits comparable immunostimulation to the conventional carrier protein, keyhole limpet hemocyanin (KLH). We further modified the S. aureus PGN microparticle to contain the SARS-CoV-2 receptor-binding domain (RBD)─this conjugate vaccine elicited neutralizing antibody titers comparable to those elicited by the KLH-conjugated RBD. Collectively, these findings suggest that chemically modified bacterial PGN microparticles are a conjugatable and biodegradable microparticle scaffold capable of eliciting a robust immune response toward an antigen of interest.


Subject(s)
COVID-19 , SARS-CoV-2 , COVID-19/prevention & control , Humans , Peptidoglycan , Staphylococcus aureus , Vaccines, Conjugate , Vaccines, Subunit
12.
Nat Immunol ; 23(4): 543-555, 2022 04.
Article in English | MEDLINE | ID: mdl-35288714

ABSTRACT

Despite the success of the BNT162b2 mRNA vaccine, the immunological mechanisms that underlie its efficacy are poorly understood. Here we analyzed the innate and adaptive responses to BNT162b2 in mice, and show that immunization stimulated potent antibody and antigen-specific T cell responses, as well as strikingly enhanced innate responses after secondary immunization, which was concurrent with enhanced serum interferon (IFN)-γ levels 1 d following secondary immunization. Notably, we found that natural killer cells and CD8+ T cells in the draining lymph nodes are the major producers of this circulating IFN-γ. Analysis of knockout mice revealed that induction of antibody and T cell responses to BNT162b2 was not dependent on signaling via Toll-like receptors 2, 3, 4, 5 and 7 nor inflammasome activation, nor the necroptosis or pyroptosis cell death pathways. Rather, the CD8+ T cell response induced by BNT162b2 was dependent on type I interferon-dependent MDA5 signaling. These results provide insights into the molecular mechanisms by which the BNT162b2 vaccine stimulates immune responses.


Subject(s)
CD8-Positive T-Lymphocytes , Vaccines , Adaptive Immunity , Animals , BNT162 Vaccine , Humans , Immunity, Innate , Mice , Vaccines, Synthetic , mRNA Vaccines
13.
bioRxiv ; 2022 Dec 26.
Article in English | MEDLINE | ID: mdl-36597527

ABSTRACT

While the rapid development of COVID-19 vaccines has been a scientific triumph, the need remains for a globally available vaccine that provides longer-lasting immunity against present and future SARS-CoV-2 variants of concern (VOCs). Here, we describe DCFHP, a ferritin-based, protein-nanoparticle vaccine candidate that, when formulated with aluminum hydroxide as the sole adjuvant (DCFHP-alum), elicits potent and durable neutralizing antisera in non-human primates against known VOCs, including Omicron BQ.1, as well as against SARS-CoV-1. Following a booster ∻one year after the initial immunization, DCFHP-alum elicits a robust anamnestic response. To enable global accessibility, we generated a cell line that can enable production of thousands of vaccine doses per liter of cell culture and show that DCFHP-alum maintains potency for at least 14 days at temperatures exceeding standard room temperature. DCFHP-alum has potential as a once-yearly booster vaccine, and as a primary vaccine for pediatric use including in infants.

14.
bioRxiv ; 2022 Dec 21.
Article in English | MEDLINE | ID: mdl-36597536

ABSTRACT

A major challenge in vaccine development, especially against rapidly evolving viruses, is the ability to focus the immune response toward evolutionarily conserved antigenic regions to confer broad protection. For example, while many broadly neutralizing antibodies against influenza have been found to target the highly conserved stem region of hemagglutinin (HA-stem), the immune response to seasonal influenza vaccines is predominantly directed to the immunodominant but variable head region (HA-head), leading to narrow-spectrum efficacy. Here, we first introduce an approach to controlling antigen orientation based on the site-specific insertion of short stretches of aspartate residues (oligoD) that facilitates antigen-binding to alum adjuvants. We demonstrate the generalizability of this approach to antigens from the Ebola virus, SARS-CoV-2, and influenza and observe enhanced antibody responses following immunization in all cases. Next, we use this approach to reorient HA in an "upside down" configuration, which we envision increases HA-stem exposure, therefore also improving its immunogenicity compared to HA-head. When applied to HA of H2N2 A/Japan/305/1957, the reoriented H2 HA (reoH2HA) on alum induced a stem-directed antibody response that cross-reacted with both group 1 and 2 influenza A HAs. Our results demonstrate the possibility and benefits of antigen reorientation via oligoD insertion, which represents a generalizable immunofocusing approach readily applicable for designing epitope-focused vaccine candidates.

15.
ACS Cent Sci ; 7(1): 183-199, 2021 Jan 27.
Article in English | MEDLINE | ID: mdl-33527087

ABSTRACT

The development of a safe and effective SARS-CoV-2 vaccine is a public health priority. We designed subunit vaccine candidates using self-assembling ferritin nanoparticles displaying one of two multimerized SARS-CoV-2 spikes: full-length ectodomain (S-Fer) or a C-terminal 70 amino-acid deletion (SΔC-Fer). Ferritin is an attractive nanoparticle platform for production of vaccines, and ferritin-based vaccines have been investigated in humans in two separate clinical trials. We confirmed proper folding and antigenicity of spike on the surface of ferritin by cryo-EM and binding to conformation-specific monoclonal antibodies. After a single immunization of mice with either of the two spike ferritin particles, a lentiviral SARS-CoV-2 pseudovirus assay revealed mean neutralizing antibody titers at least 2-fold greater than those in convalescent plasma from COVID-19 patients. Additionally, a single dose of SΔC-Fer elicited significantly higher neutralizing responses as compared to immunization with the spike receptor binding domain (RBD) monomer or spike ectodomain trimer alone. After a second dose, mice immunized with SΔC-Fer exhibited higher neutralizing titers than all other groups. Taken together, these results demonstrate that multivalent presentation of SARS-CoV-2 spike on ferritin can notably enhance elicitation of neutralizing antibodies, thus constituting a viable strategy for single-dose vaccination against COVID-19.

16.
bioRxiv ; 2020 Aug 28.
Article in English | MEDLINE | ID: mdl-32869030

ABSTRACT

Development of a safe and effective SARS-CoV-2 vaccine is a public health priority. We designed subunit vaccine candidates using self-assembling ferritin nanoparticles displaying one of two multimerized SARS-CoV-2 spikes: full-length ectodomain (S-Fer) or a C-terminal 70 amino-acid deletion (SΔC-Fer). Ferritin is an attractive nanoparticle platform for production of vaccines and ferritin-based vaccines have been investigated in humans in two separate clinical trials. We confirmed proper folding and antigenicity of spike on the surface of ferritin by cryo-EM and binding to conformation-specific monoclonal antibodies. After a single immunization of mice with either of the two spike ferritin particles, a lentiviral SARS-CoV-2 pseudovirus assay revealed mean neutralizing antibody titers at least 2-fold greater than those in convalescent plasma from COVID-19 patients. Additionally, a single dose of SΔC-Fer elicited significantly higher neutralizing responses as compared to immunization with the spike receptor binding domain (RBD) monomer or spike ectodomain trimer alone. After a second dose, mice immunized with SΔC-Fer exhibited higher neutralizing titers than all other groups. Taken together, these results demonstrate that multivalent presentation of SARS-CoV-2 spike on ferritin can notably enhance elicitation of neutralizing antibodies, thus constituting a viable strategy for single-dose vaccination against COVID-19.

17.
J Immunol Methods ; 481-482: 112789, 2020.
Article in English | MEDLINE | ID: mdl-32380014

ABSTRACT

We describe an adaptation of conventional ELISA methods to an ELISA-Array format using non-contact Piezo printing of up to 30 spots of purified recombinant viral fusion proteins and vaccine on 96 well high-protein binding plates. Antigens were printed in 1 nanoliter volumes of protein stabilizing buffer using as little as 0.25 nanograms of protein, 2000-fold less than conventional ELISA. The performance of the ELISA-Array was demonstrated by serially diluting n = 9 human post-flu vaccination plasma samples starting at a 1/1000 dilution and measuring binding to the array of Influenza antigens. Plasma polyclonal antibody levels were detected using a cocktail of biotinylated anti-human kappa and lambda light chain antibodies, followed by a Streptavidin-horseradish peroxidase conjugate and the dose-dependent signal was developed with a precipitable TMB substrate. Intra- and inter-assay precision of absorbance units among the eight donor samples showed mean CVs of 4.8% and 10.8%, respectively. The plasma could be differentiated by donor and antigen with titer sensitivities ranging from 1 × 103 to 4 × 106, IC50 values from 1 × 104 to 9 × 106, and monoclonal antibody sensitivities in the ng/mL range. Equivalent sensitivities of ELISA versus ELISA-Array, compared using plasma and an H1N1 HA trimer, were achieved on the ELISA-Array printed at 0.25 ng per 200um spot and 1000 ng per ELISA 96-well. Vacuum-sealed array plates were shown to be stable when stored for at least 2 days at ambient temperature and up to 1 month at 4-8 °C. By the use of any set of printed antigens and analyte matrices the methods of this multiplexed ELISA-Array format can be broadly applied in translational research.


Subject(s)
Antibodies, Viral/immunology , Enzyme-Linked Immunosorbent Assay , Hemagglutinin Glycoproteins, Influenza Virus/immunology , Influenza Vaccines/immunology , Antibodies, Viral/blood , Hemagglutinin Glycoproteins, Influenza Virus/blood , Humans , Influenza A Virus, H1N1 Subtype/immunology , Influenza Vaccines/blood
18.
J Clin Invest ; 129(9): 3839-3851, 2019 08 12.
Article in English | MEDLINE | ID: mdl-31403468

ABSTRACT

We previously generated 32 rotavirus-specific (RV-specific) recombinant monoclonal antibodies (mAbs) derived from B cells isolated from human intestinal resections. Twenty-four of these mAbs were specific for the VP8* fragment of RV VP4, and most (20 of 24) were non-neutralizing when tested in the conventional MA104 cell-based assay. We reexamined the ability of these mAbs to neutralize RVs in human intestinal epithelial cells including ileal enteroids and HT-29 cells. Most (18 of 20) of the "non-neutralizing" VP8* mAbs efficiently neutralized human RV in HT-29 cells or enteroids. Serum RV neutralization titers in adults and infants were significantly higher in HT-29 than MA104 cells and adsorption of these sera with recombinant VP8* lowered the neutralization titers in HT-29 but not MA104 cells. VP8* mAbs also protected suckling mice from diarrhea in an in vivo challenge model. X-ray crystallographic analysis of one VP8* mAb (mAb9) in complex with human RV VP8* revealed that the mAb interaction site was distinct from the human histo-blood group antigen binding site. Since MA104 cells are the most commonly used cell line to detect anti-RV neutralization activity, these findings suggest that prior vaccine and other studies of human RV neutralization responses may have underestimated the contribution of VP8* antibodies to the overall neutralization titer.


Subject(s)
Antibodies, Monoclonal/immunology , Antibodies, Viral/immunology , Epithelial Cells/immunology , Intestines/cytology , Rotavirus Infections/immunology , Adsorption , Animals , Antigens, Viral/immunology , B-Lymphocytes/immunology , B-Lymphocytes/virology , Binding Sites , Caco-2 Cells , Cell Line , Crystallography, X-Ray , Epithelial Cells/virology , Genotype , Haplorhini , Humans , Immunoglobulin G/chemistry , India , Infant , Infant, Newborn , Intestines/virology , Mice , Neutralization Tests , Polysaccharides/chemistry , Protein Conformation , Recombinant Proteins/immunology , United States
19.
J Infect Dis ; 219(10): 1586-1595, 2019 04 19.
Article in English | MEDLINE | ID: mdl-30496437

ABSTRACT

Annual vaccination with influenza vaccines is recommended for protection against influenza in the United States. Past clinical studies and meta-analysis, however, have reported conflicting results on the benefits of annual vaccination. B-cell responses elicited following repeat influenza vaccinations over multiple seasons have not been examined in detail. We analyzed the B-cell and antibody (Ab) responses in volunteers vaccinated yearly, from 2010 or 2011 through 2014, with seasonal trivalent inactivated influenza vaccines. Statistical analyses were designed to help correct for possible bias due to reduced sample size in the later years of the study. We show that, after the second annual vaccination, the frequency of vaccine-specific plasmablasts and the binding reactivity of plasmablast-derived polyclonal Abs are reduced and do not increase in subsequent years. Similar trends are observed with the serum hemagglutination inhibition Ab response after each annual vaccination, as well as the binding reactivity of plasmablast-derived polyclonal Abs to the hemagglutinin of influenza A virus vaccine components, even with changes in the seasonal vaccine components during the study. Our findings indicate a diminished B-cell response to annual vaccination with seasonal trivalent influenza vaccine. These results emphasize the need for developing improved strategies to enhance the immunogenicity and efficacy of annual influenza vaccination.


Subject(s)
B-Lymphocytes/immunology , Influenza Vaccines/immunology , Influenza, Human/immunology , Adolescent , Adult , Antibodies, Viral/blood , Antibody Formation , Female , Hemagglutination Inhibition Tests , Humans , Influenza A virus/immunology , Influenza, Human/prevention & control , Male , Vaccination , Vaccines, Inactivated/immunology
20.
Circ Res ; 122(12): 1689-1702, 2018 06 08.
Article in English | MEDLINE | ID: mdl-29545367

ABSTRACT

RATIONALE: Pulmonary arterial hypertension (PH) is a life-threatening condition associated with immune dysregulation and abnormal regulatory T cell (Treg) activity, but it is currently unknown whether and how abnormal Treg function differentially affects males and females. OBJECTIVE: To evaluate whether and how Treg deficiency differentially affects male and female rats in experimental PH. METHODS AND RESULTS: Male and female athymic rnu/rnu rats, lacking Tregs, were treated with the VEGFR2 (vascular endothelial growth factor receptor 2) inhibitor SU5416 or chronic hypoxia and evaluated for PH; some animals underwent Treg immune reconstitution before SU5416 administration. Plasma PGI2 (prostacyclin) levels were measured. Lung and right ventricles were assessed for the expression of the vasoprotective proteins COX-2 (cyclooxygenase 2), PTGIS (prostacyclin synthase), PDL-1 (programmed death ligand 1), and HO-1 (heme oxygenase 1). Inhibitors of these pathways were administered to athymic rats undergoing Treg immune reconstitution. Finally, human cardiac microvascular endothelial cells cocultured with Tregs were evaluated for COX-2, PDL-1, HO-1, and ER (estrogen receptor) expression, and culture supernatants were assayed for PGI2 and IL (interleukin)-10. SU5416-treatment and chronic hypoxia produced more severe PH in female than male athymic rats. Females were distinguished by greater pulmonary inflammation, augmented right ventricular fibrosis, lower plasma PGI2 levels, decreased lung COX-2, PTGIS, HO-1, and PDL-1 expression and reduced right ventricular PDL-1 levels. In both sexes, Treg immune reconstitution protected against PH development and raised levels of plasma PGI2 and cardiopulmonary COX-2, PTGIS, PDL-1, and HO-1. Inhibiting COX-2, HO-1, and PD-1 (programmed death 1)/PDL-1 pathways abrogated Treg protection. In vitro, human Tregs directly upregulated endothelial COX-2, PDL-1, HO-1, ERs and increased supernatant levels of PGI2 and IL-10. CONCLUSIONS: In 2 animal models of PH based on Treg deficiency, females developed more severe PH than males. The data suggest that females are especially reliant on the normal Treg function to counteract the effects of pulmonary vascular injury leading to PH.


Subject(s)
Hypertension, Pulmonary/prevention & control , Sex Factors , T-Lymphocytes, Regulatory/physiology , Angiogenesis Inhibitors/pharmacology , Animals , B7-H1 Antigen/analysis , B7-H1 Antigen/antagonists & inhibitors , B7-H1 Antigen/metabolism , Chronic Disease , Cyclooxygenase 2/analysis , Cyclooxygenase 2/metabolism , Cytochrome P-450 Enzyme System/analysis , Cytochrome P-450 Enzyme System/metabolism , Epoprostenol/antagonists & inhibitors , Epoprostenol/blood , Epoprostenol/metabolism , Female , Heme Oxygenase (Decyclizing)/analysis , Heme Oxygenase (Decyclizing)/antagonists & inhibitors , Heme Oxygenase (Decyclizing)/metabolism , Hypertension, Pulmonary/blood , Hypertension, Pulmonary/chemically induced , Hypertension, Pulmonary/etiology , Hypoxia/complications , Indoles/pharmacology , Intramolecular Oxidoreductases/analysis , Intramolecular Oxidoreductases/antagonists & inhibitors , Intramolecular Oxidoreductases/metabolism , Lung/metabolism , Male , Prostaglandins I/biosynthesis , Pyrroles/pharmacology , Rats , Rats, Nude , Receptors, Estrogen/analysis , Receptors, Estrogen/antagonists & inhibitors , Receptors, Estrogen/metabolism , T-Lymphocytes, Regulatory/immunology , Vascular Endothelial Growth Factor Receptor-2/antagonists & inhibitors
SELECTION OF CITATIONS
SEARCH DETAIL
...