Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Mol Sci ; 22(4)2021 Feb 21.
Article in English | MEDLINE | ID: mdl-33670016

ABSTRACT

Atovaquone (ATQ) is a drug used to prevent and treat malaria that functions by targeting the Plasmodium falciparum cytochrome b (PfCytb) protein. PfCytb catalyzes the transmembrane electron transfer (ET) pathway which maintains the mitochondrial membrane potential. The ubiquinol substrate binding site of the protein has heme bL, heme bH and iron-sulphur [2FE-2S] cluster cofactors that act as redox centers to aid in ET. Recent studies investigating ATQ resistance mechanisms have shown that point mutations of PfCytb confer resistance. Thus, understanding the resistance mechanisms at the molecular level via computational approaches incorporating phospholipid bilayer would help in the design of new efficacious drugs that are also capable of bypassing parasite resistance. With this knowledge gap, this article seeks to explore the effect of three drug resistant mutations Y268C, Y268N and Y268S on the PfCytb structure and function in the presence and absence of ATQ. To draw reliable conclusions, 350 ns all-atom membrane (POPC:POPE phospholipid bilayer) molecular dynamics (MD) simulations with derived metal parameters for the holo and ATQ-bound -proteins were performed. Thereafter, simulation outputs were analyzed using dynamic residue network (DRN) analysis. Across the triplicate MD runs, hydrophobic interactions, reported to be crucial in protein function were assessed. In both, the presence and absence of ATQ and a loss of key active site residue interactions were observed as a result of mutations. These active site residues included: Met 133, Trp136, Val140, Thr142, Ile258, Val259, Pro260 and Phe264. These changes to residue interactions are likely to destabilize the overall intra-protein residue communication network where the proteins' function could be implicated. Protein dynamics of the ATQ-bound mutant complexes showed that they assumed a different pose to the wild-type, resulting in diminished residue interactions in the mutant proteins. In summary, this study presents insights on the possible effect of the mutations on ATQ drug activity causing resistance and describes accurate MD simulations in the presence of the lipid bilayer prior to conducting inhibitory drug discovery for the PfCytb-iron sulphur protein (Cytb-ISP) complex.


Subject(s)
Atovaquone/pharmacology , Cytochromes b/genetics , Drug Resistance/genetics , Iron-Sulfur Proteins/genetics , Lipid Bilayers/metabolism , Mutation/genetics , Phospholipids/metabolism , Plasmodium falciparum/genetics , Animals , Atovaquone/chemistry , Catalytic Domain , Cattle , Drug Resistance/drug effects , Entropy , Iron-Sulfur Proteins/metabolism , Ligands , Models, Molecular , Molecular Docking Simulation , Molecular Dynamics Simulation , Plasmodium falciparum/drug effects , Protein Conformation , Protein Interaction Maps , Protein Stability
2.
Int J Mol Sci ; 21(8)2020 Apr 16.
Article in English | MEDLINE | ID: mdl-32316137

ABSTRACT

Human carbonic anhydrase 8 (CA-VIII) is an acatalytic isoform of the α -CA family. Though the protein cannot hydrate CO2, CA-VIII is essential for calcium (Ca2+) homeostasis within the body, and achieves this by allosterically inhibiting the binding of inositol 1,4,5-triphosphate (IP3) to the IP3 receptor type 1 (ITPR1) protein. However, the mechanism of interaction of CA-VIII to ITPR1 is not well understood. In addition, functional defects to CA-VIII due to non-synonymous single nucleotide polymorphisms (nsSNVs) result in Ca2+ dysregulation and the development of the phenotypes such as cerebellar ataxia, mental retardation and disequilibrium syndrome 3 (CAMRQ3). The pathogenesis of CAMRQ3 is also not well understood. The structure and function of CA-VIII was characterised, and pathogenesis of CAMRQ3 investigated. Structural and functional characterisation of CA-VIII was conducted through SiteMap and CPORT to identify potential binding site residues. The effects of four pathogenic nsSNVs, S100A, S100P, G162R and R237Q, and two benign S100L and E109D variants on CA-VIII structure and function was then investigated using molecular dynamics (MD) simulations, dynamic cross correlation (DCC) and dynamic residue network (DRN) analysis. SiteMap and CPORT analyses identified 38 unique CA-VIII residues that could potentially bind to ITPR1. MD analysis revealed less conformational sampling within the variant proteins and highlighted potential increases to variant protein rigidity. Dynamic cross correlation (DCC) showed that wild-type (WT) protein residue motion is predominately anti-correlated, with variant proteins showing no correlation to greater residue correlation. DRN revealed variant-associated increases to the accessibility of the N-terminal binding site residues, which could have implications for associations with ITPR1, and further highlighted differences to the mechanism of benign and pathogenic variants. SNV presence is associated with a reduction to the usage of Trp37 in all variants, which has implications for CA-VIII stability. The differences to variant mechanisms can be further investigated to understand pathogenesis of CAMRQ3, enhancing precision medicine-related studies into CA-VIII.


Subject(s)
Biomarkers, Tumor/metabolism , Binding Sites , Biomarkers, Tumor/chemistry , Biomarkers, Tumor/genetics , Cerebellar Ataxia/genetics , Cerebellar Ataxia/pathology , Databases, Genetic , Humans , Inositol 1,4,5-Trisphosphate Receptors/chemistry , Inositol 1,4,5-Trisphosphate Receptors/metabolism , Intellectual Disability/genetics , Intellectual Disability/pathology , Molecular Dynamics Simulation , Mutation, Missense , Polymorphism, Single Nucleotide , Protein Binding , Protein Interaction Maps , Protein Stability , Protein Structure, Tertiary
3.
Molecules ; 24(21)2019 Nov 04.
Article in English | MEDLINE | ID: mdl-31690045

ABSTRACT

Human carbonic anhydrase II (CA-II) is a Zinc (Zn 2 + ) metalloenzyme responsible for maintenance of acid-base balance within the body through the reversible hydration of CO 2 to produce protons (H + ) and bicarbonate (BCT). Due to its importance, alterations to the amino acid sequence of the protein as a result of single nucleotide variations (nsSNVs) have detrimental effects on homeostasis. Six pathogenic CA-II nsSNVs, K18E, K18Q, H107Y, P236H, P236R and N252D were identified, and variant protein models calculated using homology modeling. The effect of each nsSNV was analyzed using motif analysis, molecular dynamics (MD) simulations, principal component (PCA) and dynamic residue network (DRN) analysis. Motif analysis identified 11 functionally important motifs in CA-II. RMSD data indicated subtle SNV effects, while PCA analysis revealed that the presence of BCT results in greater conformational sampling and free energy in proteins. DRN analysis showed variant allosteric effects, and the average betweenness centrality (BC) calculations identified Glu117 as the most important residue for communication in CA-II. The presence of BCT was associated with a reduction to Glu117 usage in all variants, suggesting implications for Zn 2 + dissociation from the CA-II active site. In addition, reductions to Glu117 usage are associated with increases in the usage of the primary and secondary Zn 2 + ligands; His94, His96, His119 and Asn243 highlighting potential compensatory mechanisms to maintain Zn 2 + within the active site. Compared to traditional MD simulation investigation, DRN analysis provided greater insights into SNV mechanism of action, indicating its importance for the study of missense mutation effects in proteins and, in broader terms, precision medicine related research.


Subject(s)
Carbonic Anhydrase II/metabolism , Carbonic Anhydrase II/chemistry , Catalytic Domain , Molecular Dynamics Simulation , Mutation, Missense/genetics , Precision Medicine , Principal Component Analysis , Protein Binding
SELECTION OF CITATIONS
SEARCH DETAIL
...