Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 34
Filter
Add more filters










Publication year range
1.
Elife ; 122024 May 14.
Article in English | MEDLINE | ID: mdl-38742628

ABSTRACT

Peripheral neurons are heterogeneous and functionally diverse, but all share the capability to switch to a pro-regenerative state after nerve injury. Despite the assumption that the injury response is similar among neuronal subtypes, functional recovery may differ. Understanding the distinct intrinsic regenerative properties between neurons may help to improve the quality of regeneration, prioritizing the growth of axon subpopulations to their targets. Here, we present a comparative analysis of regeneration across four key peripheral neuron populations: motoneurons, proprioceptors, cutaneous mechanoreceptors, and nociceptors. Using Cre/Ai9 mice that allow fluorescent labeling of neuronal subtypes, we found that nociceptors showed the greater regeneration after a sciatic crush, followed by motoneurons, mechanoreceptors, and, finally, proprioceptors. By breeding these Cre mice with Ribotag mice, we isolated specific translatomes and defined the regenerative response of these neuronal subtypes after axotomy. Only 20% of the regulated genes were common, revealing a diverse response to injury among neurons, which was also supported by the differential influence of neurotrophins among neuron subtypes. Among differentially regulated genes, we proposed MED12 as a specific regulator of the regeneration of proprioceptors. Altogether, we demonstrate that the intrinsic regenerative capacity differs between peripheral neuron subtypes, opening the door to selectively modulate these responses.


Subject(s)
Peripheral Nerve Injuries , Animals , Mice , Peripheral Nerve Injuries/genetics , Peripheral Nerve Injuries/metabolism , Nerve Regeneration/physiology , Motor Neurons/physiology , Nociceptors/physiology , Nociceptors/metabolism , Sequence Analysis, RNA , Mechanoreceptors/physiology , Mechanoreceptors/metabolism , Axotomy , Male , Sciatic Nerve/injuries , Neurons/physiology
2.
J Inflamm (Lond) ; 21(1): 1, 2024 Jan 11.
Article in English | MEDLINE | ID: mdl-38212783

ABSTRACT

BACKGROUND: Mitochondrial diseases (MDs) are genetic disorders characterized by dysfunctions in mitochondria. Clinical data suggest that additional factors, beyond genetics, contribute to the onset and progression of this group of diseases, but these influencing factors remain largely unknown. Mounting evidence indicates that immune dysregulation or distress could play a role. Clinical observations have described the co-incidence of infection and the onset of the disease as well as the worsening of symptoms following infection. These findings highlight the complex interactions between MDs and immunity and underscore the need to better understand their underlying relationships. RESULTS: We used Ndufs4 KO mice, a well-established mouse model of Leigh syndrome (one of the most relevant MDs), to test whether chronic induction of a neuroinflammatory state in the central nervous system before the development of neurological symptoms would affect both the onset and progression of the disease in Ndufs4 KO mice. To this aim, we took advantage of the GFAP-IL6 mouse, which overexpresses interleukin-6 (IL-6) in astrocytes and produces chronic glial reactivity, by generating a mouse line with IL-6 overexpression and NDUFS4 deficiency. IL-6 overexpression aggravated the mortality of female Ndufs4 KO mice but did not alter the main motor and respiratory phenotypes measured in any sex. Interestingly, an abnormal region-dependent microglial response to IL-6 overexpression was observed in Ndufs4 KO mice compared to controls. CONCLUSION: Overall, our data indicate that chronic neuroinflammation may worsen the disease in Ndufs4 KO female mice, but not in males, and uncovers an abnormal microglial response due to OXPHOS dysfunction, which may have implications for our understanding of the effect of OXPHOS dysfunction in microglia.

3.
Proc Natl Acad Sci U S A ; 120(44): e2304933120, 2023 10 31.
Article in English | MEDLINE | ID: mdl-37847729

ABSTRACT

Travel can induce motion sickness (MS) in susceptible individuals. MS is an evolutionary conserved mechanism caused by mismatches between motion-related sensory information and past visual and motion memory, triggering a malaise accompanied by hypolocomotion, hypothermia, hypophagia, and nausea. Vestibular nuclei (VN) are critical for the processing of movement input from the inner ear. Motion-induced activation of VN neurons recapitulates MS-related signs. However, the genetic identity of VN neurons mediating MS-related autonomic and aversive responses remains unknown. Here, we identify a central role of cholecystokinin (CCK)-expressing VN neurons in motion-induced malaise. Moreover, we show that CCK VN inputs onto the parabrachial nucleus activate Calca-expressing neurons and are sufficient to establish avoidance to novel food, which is prevented by CCK-A receptor antagonism. These observations provide greater insight into the neurobiological regulation of MS by identifying the neural substrates of MS and providing potential targets for treatment.


Subject(s)
Motion Sickness , Vestibule, Labyrinth , Animals , Mice , Movement , Neurons/physiology , Vestibular Nuclei/physiology , Vestibule, Labyrinth/physiology
4.
Neuron ; 111(19): 3028-3040.e6, 2023 10 04.
Article in English | MEDLINE | ID: mdl-37473758

ABSTRACT

Dysregulation of protein synthesis is one of the key mechanisms underlying autism spectrum disorder (ASD). However, the role of a major pathway controlling protein synthesis, the integrated stress response (ISR), in ASD remains poorly understood. Here, we demonstrate that the main arm of the ISR, eIF2α phosphorylation (p-eIF2α), is suppressed in excitatory, but not inhibitory, neurons in a mouse model of fragile X syndrome (FXS; Fmr1-/y). We further show that the decrease in p-eIF2α is mediated via activation of mTORC1. Genetic reduction of p-eIF2α only in excitatory neurons is sufficient to increase general protein synthesis and cause autism-like behavior. In Fmr1-/y mice, restoration of p-eIF2α solely in excitatory neurons reverses elevated protein synthesis and rescues autism-related phenotypes. Thus, we reveal a previously unknown causal relationship between excitatory neuron-specific translational control via the ISR pathway, general protein synthesis, and core phenotypes reminiscent of autism in a mouse model of FXS.


Subject(s)
Autism Spectrum Disorder , Autistic Disorder , Fragile X Syndrome , Animals , Mice , Fragile X Syndrome/genetics , Fragile X Syndrome/metabolism , Fragile X Mental Retardation Protein/genetics , Neurons/metabolism , Phenotype , Mice, Knockout , Disease Models, Animal
5.
Biol Sex Differ ; 14(1): 14, 2023 03 25.
Article in English | MEDLINE | ID: mdl-36966335

ABSTRACT

BACKGROUND: Fatty acid metabolism in the hypothalamus has an important role in food intake, but its specific role in AgRP neurons is poorly understood. Here, we examined whether carnitinea palmitoyltransferase 1A (CPT1A), a key enzyme in mitochondrial fatty acid oxidation, affects energy balance. METHODS: To obtain Cpt1aKO mice and their control littermates, Cpt1a(flox/flox) mice were crossed with tamoxifen-inducible AgRPCreERT2 mice. Food intake and body weight were analyzed weekly in both males and females. At 12 weeks of age, metabolic flexibility was determined by ghrelin-induced food intake and fasting-refeeding satiety tests. Energy expenditure was analyzed by calorimetric system and thermogenic activity of brown adipose tissue. To study fluid balance the analysis of urine and water intake volumes; osmolality of urine and plasma; as well as serum levels of angiotensin and components of RAAS (renin-angiotensin-aldosterone system) were measured. At the central level, changes in AgRP neurons were determined by: (1) analyzing specific AgRP gene expression in RiboTag-Cpt1aKO mice obtained by crossing Cpt1aKO mice with RiboTag mice; (2) measuring presynaptic terminal formation in the AgRP neurons with the injection of the AAV1-EF1a-DIO-synaptophysin-GFP in the arcuate nucleus of the hypothalamus; (3) analyzing AgRP neuronal viability and spine formations by the injection AAV9-EF1a-DIO-mCherry in the arcuate nucleus of the hypothalamus; (4) analyzing in situ the specific AgRP mitochondria in the ZsGreen-Cpt1aKO obtained by breeding ZsGreen mice with Cpt1aKO mice. Two-way ANOVA analyses were performed to determine the contributions of the effect of lack of CPT1A in AgRP neurons in the sex. RESULTS: Changes in food intake were just seen in male Cpt1aKO mice while only female Cpt1aKO mice increased energy expenditure. The lack of Cpt1a in the AgRP neurons enhanced brown adipose tissue activity, mainly in females, and induced a substantial reduction in fat deposits and body weight. Strikingly, both male and female Cpt1aKO mice showed polydipsia and polyuria, with more reduced serum vasopressin levels in females and without osmolality alterations, indicating a direct involvement of Cpt1a in AgRP neurons in fluid balance. AgRP neurons from Cpt1aKO mice showed a sex-dependent gene expression pattern, reduced mitochondria and decreased presynaptic innervation to the paraventricular nucleus, without neuronal viability alterations. CONCLUSIONS: Our results highlight that fatty acid metabolism and CPT1A in AgRP neurons show marked sex differences and play a relevant role in the neuronal processes necessary for the maintenance of whole-body fluid and energy balance.


Subject(s)
Carnitine O-Palmitoyltransferase , Neurons , Thirst , Animals , Female , Male , Mice , Agouti-Related Protein/genetics , Body Weight , Fatty Acids/metabolism , Carnitine O-Palmitoyltransferase/genetics , Eating , Sex Factors
6.
Elife ; 112022 11 01.
Article in English | MEDLINE | ID: mdl-36317965

ABSTRACT

The parabrachial nucleus (PBN) is a major hub that receives sensory information from both internal and external environments. Specific populations of PBN neurons are involved in behaviors including food and water intake, nociceptive responses, breathing regulation, as well as learning and responding appropriately to threatening stimuli. However, it is unclear how many PBN neuron populations exist and how different behaviors may be encoded by unique signaling molecules or receptors. Here we provide a repository of data on the molecular identity, spatial location, and projection patterns of dozens of PBN neuron subclusters. Using single-cell RNA sequencing, we identified 21 subclusters of neurons in the PBN and neighboring regions. Multiplexed in situ hybridization showed many of these subclusters are enriched within specific PBN subregions with scattered cells in several other regions. We also provide detailed visualization of the axonal projections from 21 Cre-driver lines of mice. These results are all publicly available for download and provide a foundation for further interrogation of PBN functions and connections.


Subject(s)
Parabrachial Nucleus , Animals , Mice , Neurons , Axons
7.
Glia ; 70(11): 2032-2044, 2022 11.
Article in English | MEDLINE | ID: mdl-35770802

ABSTRACT

Leigh syndrome is a mitochondrial disease characterized by neurodegeneration, neuroinflammation, and early death. Mice lacking NDUFS4, a mitochondrial complex I subunit (Ndufs4 KO mice), have been established as a good animal model for studying human pathology associated with Leigh syndrome. As the disease progresses, there is an increase in neurodegeneration and neuroinflammation, thereby leading to deteriorating neurological symptoms, including motor deficits, breathing alterations, and eventually, death of the animal. However, despite the magnitude of neuroinflammation associated with brain lesions, the role of neuroinflammatory pathways and their main cellular components have not been addressed directly as relevant players in the disease pathology. Here, we investigate the role of microglial cells, the main immune cells of the CNS, in Leigh-like syndrome pathology, by pharmacologically depleting them using the colony-stimulating factor 1 receptor antagonist PLX3397. Microglial depletion extended lifespan and delayed motor symptoms in Ndufs4 KO mice, likely by preventing neuronal loss. Next, we investigated the role of the major cytokine interleukin-6 (IL-6) in the disease progression. IL-6 deficiency partially rescued breathing abnormalities and modulated gliosis but did not extend the lifespan or rescue motor decline in Ndufs4 KO mice. The present results show that microglial accumulation is pathogenic, in a process independent of IL-6, and hints toward a contributing role of neuroinflammation in the disease of Ndufs4 KO mice and potentially in patients with Leigh syndrome.


Subject(s)
Leigh Disease , Animals , Disease Models, Animal , Electron Transport Complex I/metabolism , Humans , Interleukin-6/metabolism , Leigh Disease/genetics , Leigh Disease/metabolism , Leigh Disease/pathology , Mice , Mice, Knockout , Microglia/metabolism
8.
Nature ; 586(7829): 412-416, 2020 10.
Article in English | MEDLINE | ID: mdl-33029011

ABSTRACT

An important tenet of learning and memory is the notion of a molecular switch that promotes the formation of long-term memory1-4. The regulation of proteostasis is a critical and rate-limiting step in the consolidation of new memories5-10. One of the most effective and prevalent ways to enhance memory is by regulating the synthesis of proteins controlled by the translation initiation factor eIF211. Phosphorylation of the α-subunit of eIF2 (p-eIF2α), the central component of the integrated stress response (ISR), impairs long-term memory formation in rodents and birds11-13. By contrast, inhibiting the ISR by mutating the eIF2α phosphorylation site, genetically11 and pharmacologically inhibiting the ISR kinases14-17, or mimicking reduced p-eIF2α with the ISR inhibitor ISRIB11, enhances long-term memory in health and disease18. Here we used molecular genetics to dissect the neuronal circuits by which the ISR gates cognitive processing. We found that learning reduces eIF2α phosphorylation in hippocampal excitatory neurons and a subset of hippocampal inhibitory neurons (those that express somatostatin, but not parvalbumin). Moreover, ablation of p-eIF2α in either excitatory or somatostatin-expressing (but not parvalbumin-expressing) inhibitory neurons increased general mRNA translation, bolstered synaptic plasticity and enhanced long-term memory. Thus, eIF2α-dependent mRNA translation controls memory consolidation via autonomous mechanisms in excitatory and somatostatin-expressing inhibitory neurons.


Subject(s)
Eukaryotic Initiation Factor-2/metabolism , Hippocampus/cytology , Memory Consolidation , Neurons/metabolism , Somatostatin/metabolism , Animals , CA1 Region, Hippocampal/cytology , CA1 Region, Hippocampal/physiology , Eukaryotic Initiation Factor-2/deficiency , Eukaryotic Initiation Factor-2/genetics , Excitatory Postsynaptic Potentials , Hippocampus/physiology , Long-Term Potentiation , Male , Memory, Long-Term , Mice , Mice, Inbred C57BL , Neural Inhibition , Neuronal Plasticity , Parvalbumins , Phosphorylation , Pyramidal Cells/physiology , Synaptic Transmission
9.
Front Cell Dev Biol ; 8: 660, 2020.
Article in English | MEDLINE | ID: mdl-32850799

ABSTRACT

Defects in mitochondrial function lead to severe neuromuscular orphan pathologies known as mitochondrial disease. Among them, Leigh Syndrome is the most common pediatric presentation, characterized by symmetrical brain lesions, hypotonia, motor and respiratory deficits, and premature death. Mitochondrial diseases are characterized by a marked anatomical and cellular specificity. However, the molecular determinants for this susceptibility are currently unknown, hindering the efforts to find an effective treatment. Due to the complex crosstalk between mitochondria and their supporting cell, strategies to assess the underlying alterations in affected cell types in the context of mitochondrial dysfunction are critical. Here, we developed a novel virus-based tool, the AAV-mitoTag viral vector, to isolate mitochondria from genetically defined cell types. Expression of the AAV-mitoTag in the glutamatergic vestibular neurons of a mouse model of Leigh Syndrome lacking the complex I subunit Ndufs4 allowed us to assess the proteome and acetylome of a subset of susceptible neurons in a well characterized model recapitulating the human disease. Our results show a marked reduction of complex I N-module subunit abundance and an increase in the levels of the assembly factor NDUFA2. Transiently associated non-mitochondrial proteins such as PKCδ, and the complement subcomponent C1Q were also increased in Ndufs4-deficient mitochondria. Furthermore, lack of Ndufs4 induced ATP synthase complex and pyruvate dehydrogenase (PDH) subunit hyperacetylation, leading to decreased PDH activity. We provide novel insight on the pathways involved in mitochondrial disease, which could underlie potential therapeutic approaches for these pathologies.

10.
Nat Commun ; 11(1): 1957, 2020 04 23.
Article in English | MEDLINE | ID: mdl-32327644

ABSTRACT

Action control is a key brain function determining the survival of animals in their environment. In mammals, neurons expressing dopamine D2 receptors (D2R) in the dorsal striatum (DS) and the nucleus accumbens (Acb) jointly but differentially contribute to the fine regulation of movement. However, their region-specific molecular features are presently unknown. By combining RNAseq of striatal D2R neurons and histological analyses, we identified hundreds of novel region-specific molecular markers, which may serve as tools to target selective subpopulations. As a proof of concept, we characterized the molecular identity of a subcircuit defined by WFS1 neurons and evaluated multiple behavioral tasks after its temporally-controlled deletion of D2R. Consequently, conditional D2R knockout mice displayed a significant reduction in digging behavior and an exacerbated hyperlocomotor response to amphetamine. Thus, targeted molecular analyses reveal an unforeseen heterogeneity in D2R-expressing striatal neuronal populations, underlying specific D2R's functional features in the control of specific motor behaviors.


Subject(s)
Neostriatum/cytology , Neurons/physiology , Nucleus Accumbens/cytology , Receptors, Dopamine D2/metabolism , Amphetamine/pharmacology , Animals , Biomarkers/metabolism , Corpus Striatum/cytology , Corpus Striatum/metabolism , Corpus Striatum/physiology , Dopamine Agents/pharmacology , Membrane Proteins/metabolism , Mice , Mice, Knockout , Mice, Transgenic , Motor Activity/drug effects , Motor Activity/genetics , Neostriatum/metabolism , Neostriatum/physiology , Neural Pathways , Neurons/cytology , Neurons/drug effects , Neurons/metabolism , Nucleus Accumbens/metabolism , Nucleus Accumbens/physiology , Receptors, Dopamine D2/genetics
11.
Elife ; 82019 08 12.
Article in English | MEDLINE | ID: mdl-31403401

ABSTRACT

Mitochondrial deficits in energy production cause untreatable and fatal pathologies known as mitochondrial disease (MD). Central nervous system affectation is critical in Leigh Syndrome (LS), a common MD presentation, leading to motor and respiratory deficits, seizures and premature death. However, only specific neuronal populations are affected. Furthermore, their molecular identity and their contribution to the disease remains unknown. Here, using a mouse model of LS lacking the mitochondrial complex I subunit Ndufs4, we dissect the critical role of genetically-defined neuronal populations in LS progression. Ndufs4 inactivation in Vglut2-expressing glutamatergic neurons leads to decreased neuronal firing, brainstem inflammation, motor and respiratory deficits, and early death. In contrast, Ndufs4 deletion in GABAergic neurons causes basal ganglia inflammation without motor or respiratory involvement, but accompanied by hypothermia and severe epileptic seizures preceding death. These results provide novel insight in the cell type-specific contribution to the pathology, dissecting the underlying cellular mechanisms of MD.


Subject(s)
Leigh Disease/pathology , Leigh Disease/physiopathology , Mitochondrial Diseases/pathology , Mitochondrial Diseases/physiopathology , Neurons/pathology , Animals , Basal Ganglia/pathology , Brain Stem/pathology , Disease Models, Animal , Disease Progression , Electron Transport Complex I/deficiency , Mice , Phenotype
12.
Curr Protoc Neurosci ; 88(1): e77, 2019 06.
Article in English | MEDLINE | ID: mdl-31216392

ABSTRACT

Ribosome tagging has become a very useful in vivo approach for analyzing gene expression and mRNA translation in specific cell types that are difficult and time consuming to isolate by conventional methods. The approach is based on selectively expressing a hemagglutinin A (HA)-tagged ribosomal protein in a target cell type and then using antibodies against HA to purify the polysomes and associated mRNAs from the target cell. The original approach makes use of a mouse line (RiboTag) harboring a modified allele of Rpl22 (Rpl22-HA) that is induced by the action of Cre recombinase. The Rpl22-HA gene can also be introduced into the animal by stereotaxic injection of an AAV-DIO-Rpl22-HA that is then activated in Cre-expressing cells. Both methods for tagging ribosomes facilitate the immunoprecipitation of ribosome-bound mRNAs and their analysis by qRT-PCR or RNA-Seq. This protocol will discuss the technical procedures and describe important considerations relevant to the analysis of the data. © 2019 by John Wiley & Sons, Inc.


Subject(s)
RNA, Messenger/biosynthesis , RNA, Messenger/genetics , Real-Time Polymerase Chain Reaction/methods , Ribosomes/genetics , Sequence Analysis, RNA/methods , Animals , Gene Expression , Mice , Mice, Inbred C57BL , Mice, Transgenic , Ribosomes/metabolism
13.
Front Mol Neurosci ; 10: 265, 2017.
Article in English | MEDLINE | ID: mdl-28883788

ABSTRACT

Inability of mitochondria to generate energy leads to severe and often fatal myoencephalopathies. Among these, Leigh syndrome (LS) is one of the most common childhood mitochondrial diseases; it is characterized by hypotonia, failure to thrive, respiratory insufficiency and progressive mental and motor dysfunction, leading to early death. Basal ganglia nuclei, including the striatum, are affected in LS patients. However, neither the identity of the affected cell types in the striatum nor their contribution to the disease has been established. Here, we used a mouse model of LS lacking Ndufs4, a mitochondrial complex I subunit, to confirm that loss of complex I, but not complex II, alters respiration in the striatum. To assess the role of striatal dysfunction in the pathology, we selectively inactivated Ndufs4 in the striatal medium spiny neurons (MSNs), which account for over 95% of striatal neurons. Our results show that lack of Ndufs4 in MSNs causes a non-fatal progressive motor impairment without affecting the cognitive function of mice. Furthermore, no inflammatory responses or neuronal loss were observed up to 6 months of age. Hence, complex I deficiency in MSNs contributes to the motor deficits observed in LS, but not to the neural degeneration, suggesting that other neuronal populations drive the plethora of clinical signs in LS.

14.
J Neurosci ; 37(33): 7939-7947, 2017 08 16.
Article in English | MEDLINE | ID: mdl-28729439

ABSTRACT

The striatum is anatomically and behaviorally implicated in behaviors that promote efficient foraging. To investigate this function, we studied instrumental choice behavior in mice lacking GPR88, a striatum-enriched orphan G-protein-coupled receptor that modulates striatal medium spiny neuron excitability. Our results reveal that hungry mice lacking GPR88 (KO mice) were slow to acquire food-reinforced lever press but could lever press similar to controls on a progressive ratio schedule. Both WT and KO mice discriminated between reward and no-reward levers; however, KO mice failed to discriminate based on relative quantity-reward (1 vs 3 food pellets) or effort (3 vs 9 lever presses). We also demonstrate preference for the high-reward (3 pellet) lever was selectively reestablished when GPR88 expression was restored to the striatum. We propose that GPR88 expression within the striatum is integral to efficient action-selection during foraging.SIGNIFICANCE STATEMENT Evolutionary pressure driving energy homeostasis favored detection and comparison of caloric value. In wild and laboratory settings, neural systems involved in energy homeostasis bias foraging to maximize energy efficiency. This is observed when foraging behaviors are guided by superior nutritional density or minimized caloric expenditure. The striatum is anatomically and functionally well placed to perform the sensory and motor integration necessary for efficient action selection during foraging. However, few studies have examined this behavioral phenomenon or elucidated underlying molecular mechanisms. Both humans and mice with nonfunctional GPR88 have been shown to present striatal dysfunctions and impaired learning. We demonstrate that GPR88 expression is necessary to efficiently integrate effort and energy density information guiding instrumental choice.


Subject(s)
Choice Behavior/physiology , Corpus Striatum/metabolism , Feeding Behavior/physiology , Receptors, G-Protein-Coupled/biosynthesis , Reward , Animals , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Random Allocation , Receptors, G-Protein-Coupled/deficiency
15.
Nat Neurosci ; 19(5): 734-741, 2016 05.
Article in English | MEDLINE | ID: mdl-27019015

ABSTRACT

In the face of starvation, animals will engage in high-risk behaviors that would normally be considered maladaptive. Starving rodents, for example, will forage in areas that are more susceptible to predators and will also modulate aggressive behavior within a territory of limited or depleted nutrients. The neural basis of these adaptive behaviors likely involves circuits that link innate feeding, aggression and fear. Hypothalamic agouti-related peptide (AgRP)-expressing neurons are critically important for driving feeding and project axons to brain regions implicated in aggression and fear. Using circuit-mapping techniques in mice, we define a disynaptic network originating from a subset of AgRP neurons that project to the medial nucleus of the amygdala and then to the principal bed nucleus of the stria terminalis, which suppresses territorial aggression and reduces contextual fear. We propose that AgRP neurons serve as a master switch capable of coordinating behavioral decisions relative to internal state and environmental cues.


Subject(s)
Aggression/physiology , Agouti-Related Protein/physiology , Amygdala/physiology , Fear/physiology , Hypothalamus/physiology , Peptide Fragments/physiology , Septal Nuclei/physiology , Starvation/physiopathology , Agouti-Related Protein/metabolism , Amygdala/metabolism , Animals , Gene Knock-In Techniques , Hypothalamus/metabolism , Male , Mice , Neural Pathways/metabolism , Neural Pathways/physiology , Neurons/physiology , Peptide Fragments/metabolism , Septal Nuclei/metabolism
16.
J Neurosci ; 35(14): 5549-56, 2015 Apr 08.
Article in English | MEDLINE | ID: mdl-25855171

ABSTRACT

Hypothalamic neuronal populations are central regulators of energy homeostasis and reproductive function. However, the ontogeny of these critical hypothalamic neuronal populations is largely unknown. We developed a novel approach to examine the developmental pathways that link specific subtypes of neurons by combining embryonic and adult ribosome-tagging strategies in mice. This new method shows that Pomc-expressing precursors not only differentiate into discrete neuronal populations that mediate energy balance (POMC and AgRP neurons), but also into neurons critical for puberty onset and the regulation of reproductive function (Kiss1 neurons). These results demonstrate a developmental link between nutrient-sensing and reproductive neuropeptide synthesizing neuronal populations and suggest a potential pathway that could link maternal nutrition to reproductive development in the offspring.


Subject(s)
Gene Expression Regulation, Developmental/genetics , Hypothalamus/cytology , Kisspeptins/metabolism , Neurons/metabolism , Pro-Opiomelanocortin/metabolism , Stem Cells/physiology , Agouti-Related Protein/genetics , Agouti-Related Protein/metabolism , Animals , Dependovirus/genetics , Embryo, Mammalian , Genetic Vectors/physiology , Green Fluorescent Proteins/genetics , Green Fluorescent Proteins/metabolism , Immunoprecipitation , Kisspeptins/genetics , Mice , Mice, Inbred C57BL , Mice, Transgenic , Microarray Analysis , Pro-Opiomelanocortin/genetics , RNA, Messenger/metabolism , T-Box Domain Proteins/genetics , T-Box Domain Proteins/metabolism
17.
Cell ; 160(1-2): 177-90, 2015 Jan 15.
Article in English | MEDLINE | ID: mdl-25594180

ABSTRACT

Reactive oxygen species (ROS) and mitochondrial defects in neurons are implicated in neurodegenerative disease. Here, we find that a key consequence of ROS and neuronal mitochondrial dysfunction is the accumulation of lipid droplets (LD) in glia. In Drosophila, ROS triggers c-Jun-N-terminal Kinase (JNK) and Sterol Regulatory Element Binding Protein (SREBP) activity in neurons leading to LD accumulation in glia prior to or at the onset of neurodegeneration. The accumulated lipids are peroxidated in the presence of ROS. Reducing LD accumulation in glia and lipid peroxidation via targeted lipase overexpression and/or lowering ROS significantly delays the onset of neurodegeneration. Furthermore, a similar pathway leads to glial LD accumulation in Ndufs4 mutant mice with neuronal mitochondrial defects, suggesting that LD accumulation following mitochondrial dysfunction is an evolutionarily conserved phenomenon, and represents an early, transient indicator and promoter of neurodegenerative disease.


Subject(s)
Lipid Droplets/metabolism , Mitochondria/metabolism , Neuroglia/metabolism , Reactive Oxygen Species/metabolism , Animals , Electron Transport Complex I/genetics , Electron Transport Complex I/metabolism , MAP Kinase Kinase 4/metabolism , Mice , Mice, Knockout , Neurodegenerative Diseases/metabolism , Neurodegenerative Diseases/pathology , Neuroglia/pathology , Neurons/pathology , Sterol Regulatory Element Binding Proteins/metabolism
18.
PLoS One ; 8(6): e66179, 2013.
Article in English | MEDLINE | ID: mdl-23776628

ABSTRACT

Male spermatogenesis is a complex biological process that is regulated by hormonal signals from the hypothalamus (GnRH), the pituitary gonadotropins (LH and FSH) and the testis (androgens, inhibin). The two key somatic cell types of the testis, Leydig and Sertoli cells, respond to gonadotropins and androgens and regulate the development and maturation of fertilization competent spermatozoa. Although progress has been made in the identification of specific transcripts that are translated in Sertoli and Leydig cells and their response to hormones, efforts to expand these studies have been restricted by technical hurdles. In order to address this problem we have applied an in vivo ribosome tagging strategy (RiboTag) that allows a detailed and physiologically relevant characterization of the "translatome" (polysome-associated mRNAs) of Leydig or Sertoli cells in vivo. Our analysis identified all previously characterized Leydig and Sertoli cell-specific markers and identified in a comprehensive manner novel markers of Leydig and Sertoli cells; the translational response of these two cell types to gonadotropins or testosterone was also investigated. Modulation of a small subset of Sertoli cell genes occurred after FSH and testosterone stimulation. However, Leydig cells responded robustly to gonadotropin deprivation and LH restoration with acute changes in polysome-associated mRNAs. These studies identified the transcription factors that are induced by LH stimulation, uncovered novel potential regulators of LH signaling and steroidogenesis, and demonstrate the effects of LH on the translational machinery in vivo in the Leydig cell.


Subject(s)
Leydig Cells/metabolism , RNA, Messenger/genetics , Sertoli Cells/metabolism , Animals , Cell Line , Follicle Stimulating Hormone/metabolism , Immunoprecipitation , Luteinizing Hormone/metabolism , Male , Mice , Reverse Transcriptase Polymerase Chain Reaction
19.
Endocrinology ; 154(8): 2784-94, 2013 Aug.
Article in English | MEDLINE | ID: mdl-23736293

ABSTRACT

Kisspeptin (Kiss1) signaling to GnRH neurons is widely acknowledged to be a prerequisite for puberty and reproduction. Animals lacking functional genes for either kisspeptin or its receptor exhibit low gonadotropin secretion and infertility. Paradoxically, a recent study reported that genetic ablation of nearly all Kiss1-expressing neurons (Kiss1 neurons) does not impair reproduction, arguing that neither Kiss1 neurons nor their products are essential for sexual maturation. We posited that only minute quantities of kisspeptin are sufficient to support reproduction. If this were the case, animals having dramatically reduced Kiss1 expression might retain fertility, testifying to the redundancy of Kiss1 neurons and their products. To test this hypothesis and to determine whether males and females differ in the required amount of kisspeptin needed for reproduction, we used a mouse (Kiss1-CreGFP) that has a severe reduction in Kiss1 expression. Mice that are heterozygous and homozygous for this allele (Kiss1(Cre/+) and Kiss1(Cre/Cre)) have ∼50% and 95% reductions in Kiss1 transcript, respectively. We found that although male Kiss1(Cre/Cre) mice sire normal-sized litters, female Kiss1(Cre/Cre) mice exhibit significantly impaired fertility and ovulation. These observations suggest that males require only 5% of normal Kiss1 expression to be reproductively competent, whereas females require higher levels for reproductive success.


Subject(s)
Kisspeptins/metabolism , Neurons/metabolism , Reproduction/physiology , Signal Transduction/physiology , Animals , Dynorphins/genetics , Female , Fertility/genetics , Fertility/physiology , Gene Expression , Genotype , Green Fluorescent Proteins/genetics , Green Fluorescent Proteins/metabolism , Immunohistochemistry , Kisspeptins/genetics , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Mice, Transgenic , Protein Precursors/genetics , Receptors, Neurokinin-3/genetics , Reproduction/genetics , Reverse Transcriptase Polymerase Chain Reaction , Sex Characteristics , Sex Factors , Sexual Maturation/genetics , Sexual Maturation/physiology , Signal Transduction/genetics , Tachykinins/genetics
20.
Glia ; 61(4): 587-600, 2013 Apr.
Article in English | MEDLINE | ID: mdl-23322593

ABSTRACT

Interleukin (IL)-6 is crucial for the induction of many murine models of autoimmunity including experimental autoimmune encephalomyelitis (EAE), an animal model of multiple sclerosis. While IL-6-deficient mice (IL-6 KO) are resistant to EAE, we showed previously that in transgenic mice with astrocyte-targeted production of IL-6-restricted to the cerebellum (GFAP-IL6), EAE induced with MOG(35-55) was redirected away from the spinal cord to the cerebellum. To further establish the importance of IL-6 produced in the central nervous system, we have generated mice producing IL-6 essentially only in the brain by crossing the GFAP-IL6 mice with IL-6 KO mice. Interestingly, GFAP-IL6-IL-6 KO mice showed a milder but almost identical phenotype as the GFAP-IL6 mice, which correlated with a lower load of inflammatory cells and decreased microglial reactivity. These results indicate that not only is cerebellar IL-6 production and eventual leakage into the peripheral compartment the dominating factor controlling this type of EAE but that it can also facilitate induction of autoimmunity in the absence of normal systemic IL-6 production.


Subject(s)
Astrocytes/pathology , Encephalomyelitis, Autoimmune, Experimental/genetics , Encephalomyelitis, Autoimmune, Experimental/pathology , Interleukin-6/biosynthesis , Animals , Astrocytes/metabolism , Cells, Cultured , Encephalomyelitis, Autoimmune, Experimental/metabolism , Female , Interleukin-6/deficiency , Interleukin-6/genetics , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Mice, Transgenic
SELECTION OF CITATIONS
SEARCH DETAIL
...