Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
STAR Protoc ; 3(3): 101555, 2022 09 16.
Article in English | MEDLINE | ID: mdl-36072757

ABSTRACT

Single-cell nucleosome, methylome, and transcriptome (scNMT) sequencing is a recently developed method that allows multiomics profiling of single cells. In this scNMT protocol, we describe profiling of cells from mouse brain and pancreatic organoids, using liquid handling platforms to increase throughput from 96-well to 384-well plate format. Our approach miniaturizes reaction volumes and incorporates the latest Smart-seq3 protocol to obtain higher numbers of detected genes and genomic DNA (gDNA) CpGs per cell. We outline normalization steps to optimally distribute per-cell sequencing depth. For complete details on the use and execution of this protocol, please refer to Clark (2019), Clark et al. (2018), and Clark et al., 2018, Hagemann-Jensen et al., 2020a, Hagemann-Jensen et al., 2020b.


Subject(s)
Epigenome , Nucleosomes , Animals , Brain , Mice , Organoids , Transcriptome
3.
Development ; 149(6)2022 03 15.
Article in English | MEDLINE | ID: mdl-35312773

ABSTRACT

During development, the heart grows by addition of progenitor cells to the poles of the primordial heart tube. In the zebrafish, Wilms tumor 1 transcription factor a (wt1a) and b (wt1b) genes are expressed in the pericardium, at the venous pole of the heart. From this pericardial layer, the proepicardium emerges. Proepicardial cells are subsequently transferred to the myocardial surface and form the epicardium, covering the myocardium. We found that while wt1a and wt1b expression is maintained in proepicardial cells, it is downregulated in pericardial cells that contributes cardiomyocytes to the developing heart. Sustained wt1b expression in cardiomyocytes reduced chromatin accessibility of specific genomic loci. Strikingly, a subset of wt1a- and wt1b-expressing cardiomyocytes changed their cell-adhesion properties, delaminated from the myocardium and upregulated epicardial gene expression. Thus, wt1a and wt1b act as a break for cardiomyocyte differentiation, and ectopic wt1a and wt1b expression in cardiomyocytes can lead to their transdifferentiation into epicardial-like cells.


Subject(s)
Myocytes, Cardiac , Zebrafish , Animals , Gene Expression Regulation, Developmental , Myocardium/metabolism , Myocytes, Cardiac/metabolism , Pericardium/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism , WT1 Proteins/genetics , WT1 Proteins/metabolism , Zebrafish/genetics , Zebrafish/metabolism , Zebrafish Proteins/genetics , Zebrafish Proteins/metabolism
5.
Methods Mol Biol ; 2158: 51-62, 2021.
Article in English | MEDLINE | ID: mdl-32857365

ABSTRACT

Zebrafish have the capacity to regenerate most of its organs upon injury, including the heart. Due to its amenability for genetic manipulation, the zebrafish is an excellent model organism to study the cellular and molecular mechanisms promoting heart regeneration. Several cardiac injury models have been developed in zebrafish, including ventricular resection, genetic ablation, and ventricular cryoinjury. This chapter provides a detailed protocol of zebrafish ventricular cryoinjury and highlights factors and critical steps to be considered when performing this method.


Subject(s)
Cardiac Surgical Procedures/adverse effects , Cryosurgery/adverse effects , Disease Models, Animal , Heart Injuries/pathology , Heart/physiology , Regeneration , Ventricular Remodeling , Animals , Cell Proliferation , Heart Injuries/etiology , Heart Injuries/rehabilitation , Zebrafish
6.
Curr Opin Genet Dev ; 64: 37-43, 2020 10.
Article in English | MEDLINE | ID: mdl-32599303

ABSTRACT

In humans, myocardial infarction results in ventricular remodeling, progressing ultimately to cardiac failure, one of the leading causes of death worldwide. In contrast to the adult mammalian heart, the zebrafish model organism has a remarkable regenerative capacity, offering the possibility to research the bases of natural regeneration. Here, we summarize recent insights into the cellular and molecular mechanisms that govern cardiac regeneration in the zebrafish.


Subject(s)
Heart/physiology , Myocytes, Cardiac/cytology , Regeneration , Zebrafish/physiology , Animals , Heart/embryology , Zebrafish/embryology
7.
Cell Rep ; 28(5): 1296-1306.e6, 2019 07 30.
Article in English | MEDLINE | ID: mdl-31365871

ABSTRACT

Organ regeneration is preceded by the recruitment of innate immune cells, which play an active role during repair and regrowth. Here, we studied macrophage subtypes during organ regeneration in the zebrafish, an animal model with a high regenerative capacity. We identified a macrophage subpopulation expressing Wilms tumor 1b (wt1b), which accumulates within regenerating tissues. This wt1b+ macrophage population exhibited an overall pro-regenerative gene expression profile and different migratory behavior compared to the remainder of the macrophages. Functional studies showed that wt1b regulates macrophage migration and retention at the injury area. Furthermore, wt1b-null mutant zebrafish presented signs of impaired macrophage differentiation, delayed fin growth upon caudal fin amputation, and reduced cardiomyocyte proliferation following cardiac injury that correlated with altered macrophage recruitment to the regenerating areas. We describe a pro-regenerative macrophage subtype in the zebrafish and a role for wt1b in organ regeneration.


Subject(s)
Animal Fins/physiology , Heart/physiology , Macrophages/metabolism , Regeneration , WT1 Proteins/metabolism , Zebrafish Proteins/metabolism , Zebrafish/metabolism , Animals , Macrophages/cytology , WT1 Proteins/genetics , Zebrafish/genetics , Zebrafish Proteins/genetics
8.
Proc Natl Acad Sci U S A ; 115(16): 4188-4193, 2018 04 17.
Article in English | MEDLINE | ID: mdl-29610343

ABSTRACT

In the zebrafish (Danio rerio), regeneration and fibrosis after cardiac injury are not mutually exclusive responses. Upon cardiac cryoinjury, collagen and other extracellular matrix (ECM) proteins accumulate at the injury site. However, in contrast to the situation in mammals, fibrosis is transient in zebrafish and its regression is concomitant with regrowth of the myocardial wall. Little is known about the cells producing this fibrotic tissue or how it resolves. Using novel genetic tools to mark periostin b- and collagen 1alpha2 (col1a2)-expressing cells in combination with transcriptome analysis, we explored the sources of activated fibroblasts and traced their fate. We describe that during fibrosis regression, fibroblasts are not fully eliminated but become inactivated. Unexpectedly, limiting the fibrotic response by genetic ablation of col1a2-expressing cells impaired cardiomyocyte proliferation. We conclude that ECM-producing cells are key players in the regenerative process and suggest that antifibrotic therapies might be less efficient than strategies targeting fibroblast inactivation.


Subject(s)
Fibroblasts/physiology , Heart/physiology , Regeneration/physiology , Animals , Animals, Genetically Modified , Base Sequence , Cell Adhesion Molecules/biosynthesis , Cell Lineage , Cold Temperature/adverse effects , Collagen Type XII/biosynthesis , Collagen Type XII/genetics , Endocardium/pathology , Extracellular Matrix/metabolism , Fibrosis , Gene Expression Regulation , Genes, Reporter , Heart Injuries/genetics , Heart Injuries/physiopathology , Myocardium/pathology , Myocytes, Cardiac/metabolism , Myocytes, Cardiac/pathology , RNA, Messenger/biosynthesis , Transcriptome , Zebrafish , Zebrafish Proteins/biosynthesis , Zebrafish Proteins/genetics
9.
Nat Commun ; 9(1): 428, 2018 01 30.
Article in English | MEDLINE | ID: mdl-29382818

ABSTRACT

During development, mesodermal progenitors from the first heart field (FHF) form a primitive cardiac tube, to which progenitors from the second heart field (SHF) are added. The contribution of FHF and SHF progenitors to the adult zebrafish heart has not been studied to date. Here we find, using genetic tbx5a lineage tracing tools, that the ventricular myocardium in the adult zebrafish is mainly derived from tbx5a+ cells, with a small contribution from tbx5a- SHF progenitors. Notably, ablation of ventricular tbx5a+-derived cardiomyocytes in the embryo is compensated by expansion of SHF-derived cells. In the adult, tbx5a expression is restricted to the trabeculae and excluded from the outer cortical layer. tbx5a-lineage tracing revealed that trabecular cardiomyocytes can switch their fate and differentiate into cortical myocardium during adult heart regeneration. We conclude that a high degree of cardiomyocyte cell fate plasticity contributes to efficient regeneration.


Subject(s)
Heart Ventricles/cytology , Myocardium/cytology , Myocytes, Cardiac/cytology , Regeneration/genetics , T-Box Domain Proteins/genetics , Zebrafish/genetics , Animals , Animals, Genetically Modified , Cell Differentiation , Cell Lineage/genetics , Cell Tracking , Embryo, Nonmammalian , Gene Expression Regulation, Developmental , Genes, Reporter , Green Fluorescent Proteins/genetics , Green Fluorescent Proteins/metabolism , Heart Ventricles/growth & development , Heart Ventricles/metabolism , Luminescent Proteins/genetics , Luminescent Proteins/metabolism , Myocardium/metabolism , Myocytes, Cardiac/metabolism , Myosin Light Chains/genetics , Myosin Light Chains/metabolism , Organogenesis/genetics , Stem Cells/cytology , Stem Cells/metabolism , T-Box Domain Proteins/deficiency , Zebrafish/growth & development , Zebrafish/metabolism , Red Fluorescent Protein
SELECTION OF CITATIONS
SEARCH DETAIL
...