Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 26
Filter
Add more filters










Publication year range
1.
Brain Commun ; 6(1): fcad355, 2024.
Article in English | MEDLINE | ID: mdl-38204971

ABSTRACT

MicroRNAs have emerged as important regulators of the gene expression landscape in temporal lobe epilepsy. The mechanisms that control microRNA levels and influence target choice remain, however, poorly understood. RNA editing is a post-transcriptional mechanism mediated by the adenosine acting on RNA (ADAR) family of proteins that introduces base modification that diversifies the gene expression landscape. RNA editing has been studied for the mRNA landscape but the extent to which microRNA editing occurs in human temporal lobe epilepsy is unknown. Here, we used small RNA-sequencing data to characterize the identity and extent of microRNA editing in human temporal lobe epilepsy brain samples. This detected low-to-high editing in over 40 of the identified microRNAs. Among microRNA exhibiting the highest editing was miR-376a-3p, which was edited in the seed region and this was predicted to significantly change the target pool. The edited form was expressed at lower levels in human temporal lobe epilepsy samples. We modelled the shift in editing levels of miR-376a-3p in human-induced pluripotent stem cell-derived neurons. Reducing levels of the edited form of miR-376a-3p using antisense oligonucleotides resulted in extensive gene expression changes, including upregulation of mitochondrial and metabolism-associated pathways. Together, these results show that differential editing of microRNAs may re-direct targeting and result in altered functions relevant to the pathophysiology of temporal lobe epilepsy and perhaps other disorders of neuronal hyperexcitability.

2.
Front Mol Neurosci ; 16: 1230942, 2023.
Article in English | MEDLINE | ID: mdl-37808470

ABSTRACT

The diagnosis of epilepsy is complex and challenging and would benefit from the availability of molecular biomarkers, ideally measurable in a biofluid such as blood. Experimental and human epilepsy are associated with altered brain and blood levels of various microRNAs (miRNAs). Evidence is lacking, however, as to whether any of the circulating pool of miRNAs originates from the brain. To explore the link between circulating miRNAs and the pathophysiology of epilepsy, we first sequenced argonaute 2 (Ago2)-bound miRNAs in plasma samples collected from mice subject to status epilepticus induced by intraamygdala microinjection of kainic acid. This identified time-dependent changes in plasma levels of miRNAs with known neuronal and microglial-cell origins. To explore whether the circulating miRNAs had originated from the brain, we generated mice expressing FLAG-Ago2 in neurons or microglia using tamoxifen-inducible Thy1 or Cx3cr1 promoters, respectively. FLAG immunoprecipitates from the plasma of these mice after seizures contained miRNAs, including let-7i-5p and miR-19b-3p. Taken together, these studies confirm that a portion of the circulating pool of miRNAs in experimental epilepsy originates from the brain, increasing support for miRNAs as mechanistic biomarkers of epilepsy.

3.
Front Pharmacol ; 14: 1308478, 2023.
Article in English | MEDLINE | ID: mdl-38259288

ABSTRACT

There remains a need for new drug targets for treatment-resistant temporal lobe epilepsy. The ATP-gated P2X7 receptor coordinates neuroinflammatory responses to tissue injury. Previous studies in mice reported that the P2X7 receptor antagonist JNJ-47965567 suppressed spontaneous seizures in the intraamygdala kainic acid model of epilepsy and reduced attendant gliosis in the hippocampus. The drug-resistance profile of this model is not fully characterised, however, and newer P2X7 receptor antagonists with superior pharmacokinetic profiles have recently entered clinical trials. Using telemetry-based continuous EEG recordings in mice, we demonstrate that spontaneous recurrent seizures in the intraamygdala kainic acid model are refractory to the common anti-seizure medicine levetiracetam. In contrast, once-daily dosing of JNJ-54175446 (30 mg/kg, intraperitoneal) resulted in a significant reduction in spontaneous recurrent seizures which lasted several days after the end of drug administration. Using a combination of immunohistochemistry and ex vivo radiotracer assay, we find that JNJ-54175446-treated mice at the end of recordings display a reduction in astrogliosis and altered microglia process morphology within the ipsilateral CA3 subfield of the hippocampus, but no difference in P2X7 receptor surface expression. The present study extends the characterisation of the drug-resistance profile of the intraamygdala kainic acid model in mice and provides further evidence that targeting the P2X7 receptor may have therapeutic applications in the treatment of temporal lobe epilepsy.

4.
Epilepsia ; 63(8): e92-e99, 2022 08.
Article in English | MEDLINE | ID: mdl-35656590

ABSTRACT

Antisense inhibition of microRNAs is an emerging preclinical approach to pharmacoresistant epilepsy. A leading candidate is an "antimiR" targeting microRNA-134 (ant-134), but testing to date has used rodent models. Here, we develop an antimiR testing platform in human brain tissue sections. Brain specimens were obtained from patients undergoing resective surgery to treat pharmacoresistant epilepsy. Neocortical specimens were submerged in modified artificial cerebrospinal fluid (ACSF) and dissected for clinical neuropathological examination, and unused material was transferred for sectioning. Individual sections were incubated in oxygenated ACSF, containing either ant-134 or a nontargeting control antimiR, for 24 h at room temperature. RNA integrity was assessed using BioAnalyzer processing, and individual miRNA levels were measured using quantitative reverse transcriptase polymerase chain reaction. Specimens transported in ACSF could be used for neuropathological diagnosis and had good RNA integrity. Ant-134 mediated a dose-dependent knockdown of miR-134, with approximately 75% reduction of miR-134 at 1 µmol L-1 and 90% reduction at 3 µmol L-1 . These doses did not have off-target effects on expression of a selection of three other miRNAs. This is the first demonstration of ant-134 effects in live human brain tissues. The findings lend further support to the preclinical development of a therapy that targets miR-134 and offer a flexible platform for the preclinical testing of antimiRs, and other antisense oligonucleotide therapeutics, in human brain.


Subject(s)
MicroRNAs , Brain/metabolism , Humans , MicroRNAs/genetics , MicroRNAs/metabolism , Oligonucleotides , Oligonucleotides, Antisense
5.
Mol Ther ; 29(6): 2041-2052, 2021 06 02.
Article in English | MEDLINE | ID: mdl-33609732

ABSTRACT

Oligonucleotide therapies offer precision treatments for a variety of neurological diseases, including epilepsy, but their deployment is hampered by the blood-brain barrier (BBB). Previous studies showed that intracerebroventricular injection of an antisense oligonucleotide (antagomir) targeting microRNA-134 (Ant-134) reduced evoked and spontaneous seizures in animal models of epilepsy. In this study, we used assays of serum protein and tracer extravasation to determine that BBB disruption occurring after status epilepticus in mice was sufficient to permit passage of systemically injected Ant-134 into the brain parenchyma. Intraperitoneal and intravenous injection of Ant-134 reached the hippocampus and blocked seizure-induced upregulation of miR-134. A single intraperitoneal injection of Ant-134 at 2 h after status epilepticus in mice resulted in potent suppression of spontaneous recurrent seizures, reaching a 99.5% reduction during recordings at 3 months. The duration of spontaneous seizures, when they occurred, was also reduced in Ant-134-treated mice. In vivo knockdown of LIM kinase-1 (Limk-1) increased seizure frequency in Ant-134-treated mice, implicating de-repression of Limk-1 in the antagomir mechanism. These studies indicate that systemic delivery of Ant-134 reaches the brain and produces long-lasting seizure-suppressive effects after systemic injection in mice when timed with BBB disruption and may be a clinically viable approach for this and other disease-modifying microRNA therapies.


Subject(s)
Antagomirs/genetics , Blood-Brain Barrier/metabolism , Epilepsy/genetics , Epilepsy/therapy , Animals , Antagomirs/administration & dosage , Blood-Brain Barrier/pathology , Disease Management , Disease Models, Animal , Disease Susceptibility , Gene Expression Regulation , Gene Silencing , Gene Transfer Techniques , Genetic Predisposition to Disease , Genetic Therapy , Mice , MicroRNAs/genetics , RNA Interference , Treatment Outcome
6.
Mol Brain ; 13(1): 114, 2020 08 21.
Article in English | MEDLINE | ID: mdl-32825833

ABSTRACT

MicroRNAs perform important roles in the post-transcriptional regulation of gene expression. Sequencing as well as functional studies using antisense oligonucleotides indicate important roles for microRNAs during the development of epilepsy through targeting transcripts involved in neuronal structure, gliosis and inflammation. MicroRNA-22 (miR-22) has been reported to protect against the development of epileptogenic brain networks through suppression of neuroinflammatory signalling. Here, we used mice with a genetic deletion of miR-22 to extend these insights. Mice lacking miR-22 displayed normal behaviour and brain structure and developed similar status epilepticus after intraamygdala kainic acid compared to wildtype animals. Continuous EEG monitoring after status epilepticus revealed, however, an accelerated and exacerbated epilepsy phenotype whereby spontaneous seizures began sooner, occurred more frequently and were of longer duration in miR-22-deficient mice. RNA sequencing analysis of the hippocampus during the period of epileptogenesis revealed a specific suppression of inflammatory signalling in the hippocampus of miR-22-deficient mice. Taken together, these findings indicate a role for miR-22 in establishing early inflammatory responses to status epilepticus. Inflammatory signalling may serve anti-epileptogenic functions and cautions the timing of anti-inflammatory interventions for the treatment of status epilepticus.


Subject(s)
Disease Progression , Epilepsy/genetics , Epilepsy/pathology , Gene Deletion , Inflammation/genetics , MicroRNAs/genetics , Status Epilepticus/genetics , Transcription, Genetic , Animals , Down-Regulation/genetics , Female , Inflammation/pathology , Male , Mice , MicroRNAs/metabolism , Phenotype , Signal Transduction
7.
Neurobiol Dis ; 144: 105048, 2020 10.
Article in English | MEDLINE | ID: mdl-32800995

ABSTRACT

Epilepsy diagnosis is complex, requires a team of specialists and relies on in-depth patient and family history, MRI-imaging and EEG monitoring. There is therefore an unmet clinical need for a non-invasive, molecular-based, biomarker to either predict the development of epilepsy or diagnose a patient with epilepsy who may not have had a witnessed seizure. Recent studies have demonstrated a role for microRNAs in the pathogenesis of epilepsy. MicroRNAs are short non-coding RNA molecules which negatively regulate gene expression, exerting profound influence on target pathways and cellular processes. The presence of microRNAs in biofluids, ease of detection, resistance to degradation and functional role in epilepsy render them excellent candidate biomarkers. Here we performed the first multi-model, genome-wide profiling of plasma microRNAs during epileptogenesis and in chronic temporal lobe epilepsy animals. From video-EEG monitored rats and mice we serially sampled blood samples and identified a set of dysregulated microRNAs comprising increased miR-93-5p, miR-142-5p, miR-182-5p, miR-199a-3p and decreased miR-574-3p during one or both phases. Validation studies found miR-93-5p, miR-199a-3p and miR-574-3p were also dysregulated in plasma from patients with intractable temporal lobe epilepsy. Treatment of mice with common anti-epileptic drugs did not alter the expression levels of any of the five miRNAs identified, however administration of an anti-epileptogenic microRNA treatment prevented dysregulation of several of these miRNAs. The miRNAs were detected within the Argonuate2-RISC complex from both neurons and microglia indicating these miRNA biomarker candidates can likely be traced back to specific brain cell types. The current studies identify additional circulating microRNA biomarkers of experimental and human epilepsy which may support diagnosis of temporal lobe epilepsy via a quick, cost-effective rapid molecular-based test.


Subject(s)
Circulating MicroRNA/genetics , Epilepsy, Temporal Lobe/genetics , Animals , Anticonvulsants/pharmacology , Blood-Brain Barrier/metabolism , Circulating MicroRNA/drug effects , Disease Models, Animal , Electric Stimulation , Epilepsy, Temporal Lobe/blood , Epilepsy, Temporal Lobe/chemically induced , Excitatory Amino Acid Agonists/toxicity , Kainic Acid/toxicity , Male , Mice , Muscarinic Agonists/toxicity , Perforant Pathway , Pilocarpine/toxicity , Rats
8.
Proc Natl Acad Sci U S A ; 117(27): 15977-15988, 2020 07 07.
Article in English | MEDLINE | ID: mdl-32581127

ABSTRACT

Temporal lobe epilepsy is the most common drug-resistant form of epilepsy in adults. The reorganization of neural networks and the gene expression landscape underlying pathophysiologic network behavior in brain structures such as the hippocampus has been suggested to be controlled, in part, by microRNAs. To systematically assess their significance, we sequenced Argonaute-loaded microRNAs to define functionally engaged microRNAs in the hippocampus of three different animal models in two species and at six time points between the initial precipitating insult through to the establishment of chronic epilepsy. We then selected commonly up-regulated microRNAs for a functional in vivo therapeutic screen using oligonucleotide inhibitors. Argonaute sequencing generated 1.44 billion small RNA reads of which up to 82% were microRNAs, with over 400 unique microRNAs detected per model. Approximately half of the detected microRNAs were dysregulated in each epilepsy model. We prioritized commonly up-regulated microRNAs that were fully conserved in humans and designed custom antisense oligonucleotides for these candidate targets. Antiseizure phenotypes were observed upon knockdown of miR-10a-5p, miR-21a-5p, and miR-142a-5p and electrophysiological analyses indicated broad safety of this approach. Combined inhibition of these three microRNAs reduced spontaneous seizures in epileptic mice. Proteomic data, RNA sequencing, and pathway analysis on predicted and validated targets of these microRNAs implicated derepressed TGF-ß signaling as a shared seizure-modifying mechanism. Correspondingly, inhibition of TGF-ß signaling occluded the antiseizure effects of the antagomirs. Together, these results identify shared, dysregulated, and functionally active microRNAs during the pathogenesis of epilepsy which represent therapeutic antiseizure targets.


Subject(s)
Epilepsy, Temporal Lobe/drug therapy , Epilepsy, Temporal Lobe/metabolism , MicroRNAs/drug effects , MicroRNAs/metabolism , Oligonucleotides, Antisense/pharmacology , Seizures/drug therapy , Seizures/metabolism , Animals , Antagomirs/pharmacology , Argonaute Proteins/genetics , Argonaute Proteins/metabolism , Biomarkers , Disease Models, Animal , Epilepsy , Female , Hippocampus/metabolism , Humans , Male , Mice , Mice, Inbred C57BL , MicroRNAs/genetics , Proteomics , Rats , Rats, Sprague-Dawley , Seizures/genetics , Systems Analysis , Up-Regulation/drug effects
9.
J Neurosci ; 39(27): 5377-5392, 2019 07 03.
Article in English | MEDLINE | ID: mdl-31048325

ABSTRACT

Extracellular ATP activates inflammatory responses to tissue injury. It is also implicated in establishing lasting network hyperexcitability in the brain by acting upon independent receptor systems. Whereas the fast-acting P2X channels have well-established roles driving neuroinflammation and increasing hyperexcitability, the slower-acting metabotropic P2Y receptors have received much less attention. Recent studies of P2Y1 receptor function in seizures and epilepsy have produced contradictory results, suggesting that the role of this receptor during seizure pathology may be highly sensitive to context. Here, by using male mice, we demonstrate that the metabotropic P2Y1 receptor mediates either proconvulsive or anticonvulsive responses, dependent on the time point of activation in relation to the induction of status epilepticus. P2Y1 deficiency or a P2Y1 antagonist (MRS2500) administered before a chemoconvulsant, exacerbates epileptiform activity, whereas a P2Y1 agonist (MRS2365) administered at this time point is anticonvulsant. When these drugs are administered after the onset of status epilepticus, however, their effect on seizure severity is reversed, with the antagonist now anticonvulsant and the agonist proconvulsant. This result was consistent across two different mouse models of status epilepticus (intra-amygdala kainic acid and intraperitoneal pilocarpine). Pharmacologic P2Y1 blockade during status epilepticus reduces also associated brain damage, delays the development of epilepsy and, when applied during epilepsy, suppresses spontaneous seizures, in mice. Our data show a context-specific role for P2Y1 during seizure pathology and demonstrate that blocking P2Y1 after status epilepticus and during epilepsy has potent anticonvulsive effects, suggesting that P2Y1 may be a novel candidate for the treatment of drug-refractory status epilepticus and epilepsy.SIGNIFICANCE STATEMENT This is the first study to fully characterize the contribution of a metabotropic purinergic P2Y receptor during acute seizures and epilepsy. The findings suggest that targeting P2Y1 may offer a potential novel treatment strategy for drug-refractory status epilepticus and epilepsy. Our data demonstrate a context-specific role of P2Y1 activation during seizures, switching from a proconvulsive to an anticonvulsive role depending on physiopathological context. Thus, our study provides a possible explanation for seemingly conflicting results obtained between studies of different brain diseases where P2Y1 targeting has been proposed as a potential treatment strategy and highlights that the timing of pharmacological interventions is of critical importance to the understanding of how receptors contribute to the generation of seizures and the development of epilepsy.


Subject(s)
Brain/physiopathology , Epilepsy/physiopathology , Receptors, Purinergic P2Y1/physiology , Status Epilepticus/physiopathology , Adenosine Diphosphate/administration & dosage , Adenosine Diphosphate/analogs & derivatives , Animals , Brain/drug effects , Deoxyadenine Nucleotides/administration & dosage , Disease Models, Animal , Electroencephalography , Male , Mice, Inbred C57BL , Mice, Knockout , Purinergic P2Y Receptor Agonists/administration & dosage , Purinergic P2Y Receptor Antagonists/administration & dosage , Receptors, Purinergic P2Y1/genetics
10.
Front Neurosci ; 13: 1404, 2019.
Article in English | MEDLINE | ID: mdl-32009885

ABSTRACT

Repetitive or prolonged seizures (status epilepticus) can damage neurons within the hippocampus, trigger gliosis, and generate an enduring state of hyperexcitability. Recent studies have suggested that microvesicles including exosomes are released from brain cells following stimulation and tissue injury, conveying contents between cells including microRNAs (miRNAs). Here, we characterized the effects of experimental status epilepticus on the expression of exosome biosynthesis components and analyzed miRNA content in exosome-enriched fractions. Status epilepticus induced by unilateral intra-amygdala kainic acid in mice resulted in acute subfield-specific, bi-directional changes in hippocampal transcripts associated with exosome biosynthesis including up-regulation of endosomal sorting complexes required for transport (ESCRT)-dependent and -independent pathways. Increased expression of exosome components including Alix were detectable in samples obtained 2 weeks after status epilepticus and changes occurred in both the ipsilateral and contralateral hippocampus. RNA sequencing of exosome-enriched fractions prepared using two different techniques detected a rich diversity of conserved miRNAs and showed that status epilepticus selectively alters miRNA contents. We also characterized editing sites of the exosome-enriched miRNAs and found six exosome-enriched miRNAs that were adenosine-to-inosine (ADAR) edited with the majority of the editing events predicted to occur within miRNA seed regions. However, the prevalence of these editing events was not altered by status epilepticus. These studies demonstrate that status epilepticus alters the exosome pathway and its miRNA content, but not editing patterns. Further functional studies will be needed to determine if these changes have pathophysiological significance for epileptogenesis.

11.
Cell Death Dis ; 9(10): 969, 2018 09 20.
Article in English | MEDLINE | ID: mdl-30237424

ABSTRACT

Glycogen synthase kinase-3 (GSK-3) is ubiquitously expressed throughout the brain and involved in vital molecular pathways such as cell survival and synaptic reorganization and has emerged as a potential drug target for brain diseases. A causal role for GSK-3, in particular the brain-enriched GSK-3ß isoform, has been demonstrated in neurodegenerative diseases such as Alzheimer's and Huntington's, and in psychiatric diseases. Recent studies have also linked GSK-3 dysregulation to neuropathological outcomes in epilepsy. To date, however, there has been no genetic evidence for the involvement of GSK-3 in seizure-induced pathology. Status epilepticus (prolonged, damaging seizure) was induced via a microinjection of kainic acid into the amygdala of mice. Studies were conducted using two transgenic mouse lines: a neuron-specific GSK-3ß overexpression and a neuron-specific dominant-negative GSK-3ß (GSK-3ß-DN) expression in order to determine the effects of increased or decreased GSK-3ß activity, respectively, on seizures and attendant pathological changes in the hippocampus. GSK-3 inhibitors were also employed to support the genetic approach. Status epilepticus resulted in a spatiotemporal regulation of GSK-3 expression and activity in the hippocampus, with decreased GSK-3 activity evident in non-damaged hippocampal areas. Consistent with this, overexpression of GSK-3ß exacerbated status epilepticus-induced neurodegeneration in mice. Surprisingly, decreasing GSK-3 activity, either via overexpression of GSK-3ß-DN or through the use of specific GSK-3 inhibitors, also exacerbated hippocampal damage and increased seizure severity during status epilepticus. In conclusion, our results demonstrate that the brain has limited tolerance for modulation of GSK-3 activity in the setting of epileptic brain injury. These findings caution against targeting GSK-3 as a treatment strategy for epilepsy or other neurologic disorders where neuronal hyperexcitability is an underlying pathomechanism.


Subject(s)
Glycogen Synthase Kinase 3 beta/metabolism , Hippocampus/metabolism , Hippocampus/pathology , Neuropathology/methods , Status Epilepticus/genetics , Status Epilepticus/metabolism , Animals , Blotting, Western , Disease Models, Animal , Glycogen Synthase Kinase 3 beta/genetics , Male , Mice , Mice, Inbred C57BL , Phosphorylation/genetics , Phosphorylation/physiology , Real-Time Polymerase Chain Reaction , Spatio-Temporal Analysis , Status Epilepticus/pathology , Synaptosomes/metabolism
12.
Mol Ther Nucleic Acids ; 6: 45-56, 2017 Mar 17.
Article in English | MEDLINE | ID: mdl-28325299

ABSTRACT

Current anti-epileptic drugs (AEDs) act on a limited set of neuronal targets, are ineffective in a third of patients with epilepsy, and do not show disease-modifying properties. MicroRNAs are small noncoding RNAs that regulate levels of proteins by post-transcriptional control of mRNA stability and translation. MicroRNA-134 is involved in controlling neuronal microstructure and brain excitability and previous studies showed that intracerebroventricular injections of locked nucleic acid (LNA), cholesterol-tagged antagomirs targeting microRNA-134 (Ant-134) reduced evoked and spontaneous seizures in mouse models of status epilepticus. Translation of these findings would benefit from evidence of efficacy in non-status epilepticus models and validation in another species. Here, we report that electrographic seizures and convulsive behavior are strongly reduced in adult mice pre-treated with Ant-134 in the pentylenetetrazol model. Pre-treatment with Ant-134 did not affect the severity of status epilepticus induced by perforant pathway stimulation in adult rats, a toxin-free model of acquired epilepsy. Nevertheless, Ant-134 post-treatment reduced the number of rats developing spontaneous seizures by 86% in the perforant pathway stimulation model and Ant-134 delayed epileptiform activity in a rat ex vivo hippocampal slice model. The potent anticonvulsant effects of Ant-134 in multiple models may encourage pre-clinical development of this approach to epilepsy therapy.

13.
Mol Neurodegener ; 12(1): 21, 2017 02 24.
Article in English | MEDLINE | ID: mdl-28235423

ABSTRACT

BACKGROUND: The ubiquitin-proteasome-system (UPS) is the major intracellular pathway leading to the degradation of unwanted and/or misfolded soluble proteins. This includes proteins regulating cellular survival, synaptic plasticity and neurotransmitter signaling; processes controlling excitability thresholds that are altered by epileptogenic insults. Dysfunction of the UPS has been reported to occur in a brain region- and cell-specific manner and contribute to disease progression in acute and chronic brain diseases. Prolonged seizures, status epilepticus, may alter UPS function but there has been no systematic attempt to map when and where this occurs in vivo or to determine the consequences of proteasome inhibition on seizure-induced brain injury. METHOD: To determine whether seizures lead to an impairment of the UPS, we used a mouse model of status epilepticus whereby seizures are triggered by an intra-amygdala injection of kainic acid. Status epilepticus in this model causes cell death in selected brain areas, in particular the ipsilateral CA3 subfield of the hippocampus, and the development of epilepsy after a short latent period. To monitor seizure-induced dysfunction of the UPS we used a UPS inhibition reporter mouse expressing the ubiquitin fusion degradation substrate ubiquitinG76V-green fluorescent protein. Treatment with the specific proteasome inhibitor epoxomicin was used to establish the impact of proteasome inhibition on seizure-induced pathology. RESULTS AND CONCLUSIONS: Our studies show that status epilepticus induced by intra-amygdala kainic acid causes select spatio-temporal UPS inhibition which is most evident in damage-resistant regions of the hippocampus, including CA1 pyramidal and dentate granule neurons then appears later in astrocytes. In support of this exerting a beneficial effect, injection of mice with the proteasome inhibitor epoxomicin protected the normally vulnerable hippocampal CA3 subfield from seizure-induced neuronal death in the model. These studies reveal brain region- and cell-specific UPS impairment occurs after seizures and suggest UPS inhibition can protect against seizure-induced brain damage. Identifying networks or pathways regulated through the proteasome after seizures may yield novel target genes for the treatment of seizure-induced cell death and possibly epilepsy.


Subject(s)
Adaptation, Physiological/physiology , Hippocampus/physiopathology , Proteasome Endopeptidase Complex/physiology , Status Epilepticus/physiopathology , Animals , Blotting, Western , Disease Models, Animal , Fluorescent Antibody Technique , Male , Mice , Mice, Inbred C57BL , Microscopy, Confocal , Real-Time Polymerase Chain Reaction , Ubiquitin/metabolism
14.
Biochim Biophys Acta Mol Cell Res ; 1864(2): 255-266, 2017 Feb.
Article in English | MEDLINE | ID: mdl-27840225

ABSTRACT

Cells have developed complex transcriptional regulatory mechanisms to maintain intracellular homeostasis and withstand pathophysiological stressors. Feed-forward loops comprising transcription factors that drive expression of both target gene and a microRNA as negative regulator, are gaining increasing recognition as key regulatory elements of cellular homeostasis. The ATP-gated purinergic P2X7 receptor (P2X7R) is an important driver of inflammation and has been implicated in the pathogenesis of numerous brain diseases including epilepsy. Changes in P2X7R expression have been reported in both experimental models and in epilepsy patients but the mechanism(s) controlling P2X7R levels remain incompletely understood. The specificity protein 1 (Sp1) has been shown to induce P2X7R transcription in vitro and recent data has identified microRNA-22 as a post-transcriptional repressor of P2X7R expression after seizures. In the present study we show that Sp1 can induce the transcription of both microRNA-22 and P2X7R in vitro during increased neuronal activity and in vivo in a mouse model of status epilepticus. We further show that Sp1-driven microRNA-22 transcription is calcium-sensitive and Sp1 occupancy of the microRNA-22 promoter region is blocked under conditions of seizure activity sufficient to elicit neuronal death. Taken together, our results suggest a neuronal activity-dependent P2X7R expression which is induced by the transcription factor Sp1 and repressed in a calcium-dependent manner by microRNA-22.


Subject(s)
Adenosine Triphosphate/metabolism , Calcium/metabolism , MicroRNAs/metabolism , Receptors, Purinergic P2X7/physiology , Sp1 Transcription Factor/physiology , Animals , Male , Mice , Mice, Inbred C57BL , MicroRNAs/genetics , Promoter Regions, Genetic , Receptors, Purinergic P2X7/genetics , Transcription, Genetic/physiology
15.
J Neurosci ; 36(22): 5920-32, 2016 06 01.
Article in English | MEDLINE | ID: mdl-27251615

ABSTRACT

UNLABELLED: Neuroinflammation is thought to contribute to the pathogenesis and maintenance of temporal lobe epilepsy, but the underlying cell and molecular mechanisms are not fully understood. The P2X7 receptor is an ionotropic receptor predominantly expressed on the surface of microglia, although neuronal expression has also been reported. The receptor is activated by the release of ATP from intracellular sources that occurs during neurodegeneration, leading to microglial activation and inflammasome-mediated interleukin 1ß release that contributes to neuroinflammation. Using a reporter mouse in which green fluorescent protein is induced in response to the transcription of P2rx7, we show that expression of the receptor is selectively increased in CA1 pyramidal and dentate granule neurons, as well as in microglia in mice that developed epilepsy after intra-amygdala kainic acid-induced status epilepticus. P2X7 receptor levels were increased in hippocampal subfields in the mice and in resected hippocampus from patients with pharmacoresistant temporal lobe epilepsy. Cells transcribing P2rx7 in hippocampal slices from epileptic mice displayed enhanced agonist-evoked P2X7 receptor currents, and synaptosomes from these animals showed increased P2X7 receptor levels and altered calcium responses. A 5 d treatment of epileptic mice with systemic injections of the centrally available, potent, and specific P2X7 receptor antagonist JNJ-47965567 (30 mg/kg) significantly reduced spontaneous seizures during continuous video-EEG monitoring that persisted beyond the time of drug presence in the brain. Hippocampal sections from JNJ-47965567-treated animals obtained >5 d after treatment ceased displayed strongly reduced microgliosis and astrogliosis. The present study suggests that targeting the P2X7 receptor has anticonvulsant and possibly disease-modifying effects in experimental epilepsy. SIGNIFICANCE STATEMENT: Temporal lobe epilepsy is the most common and drug-resistant form of epilepsy in adults. Neuroinflammation is implicated as a pathomechanism, but the upstream mechanisms driving gliosis and how important this is for seizures remain unclear. In our study, we show that the ATP-gated P2X7 receptor is upregulated in experimental epilepsy and resected hippocampus from epilepsy patients. Targeting the receptor with a new centrally available antagonist, JNJ-47965567, suppressed epileptic seizures well beyond the time of treatment and reduced underlying gliosis in the hippocampus. The findings suggest a potential disease-modifying treatment for epilepsy based on targeting the P2X7 receptor.


Subject(s)
Epilepsy, Temporal Lobe/complications , Epilepsy, Temporal Lobe/drug therapy , Gliosis/drug therapy , Gliosis/etiology , Purinergic P2X Receptor Antagonists/therapeutic use , Seizures/drug therapy , Seizures/etiology , Adenosine Triphosphate/analogs & derivatives , Adenosine Triphosphate/pharmacology , Adolescent , Adult , Animals , Brain/metabolism , Brain/ultrastructure , Calcium-Binding Proteins/metabolism , Disease Models, Animal , Epilepsy, Temporal Lobe/pathology , Gene Expression Regulation/drug effects , Gene Expression Regulation/physiology , Green Fluorescent Proteins/genetics , Green Fluorescent Proteins/metabolism , Humans , Male , Mice , Mice, Inbred C57BL , Mice, Transgenic , Microfilament Proteins/metabolism , Middle Aged , Nerve Tissue Proteins/metabolism , Niacinamide/analogs & derivatives , Niacinamide/metabolism , Niacinamide/pharmacology , Niacinamide/therapeutic use , Piperazines/metabolism , Piperazines/pharmacology , Piperazines/therapeutic use , Platelet Aggregation Inhibitors/pharmacology , Purinergic P2X Receptor Antagonists/pharmacology , Receptors, Purinergic P2X7/genetics , Receptors, Purinergic P2X7/metabolism , Up-Regulation/drug effects , Up-Regulation/physiology , Young Adult
16.
PLoS One ; 10(12): e0145316, 2015.
Article in English | MEDLINE | ID: mdl-26699132

ABSTRACT

MicroRNAs are a class of small non-coding RNA that regulate gene expression at a post-transcriptional level. MicroRNAs have been identified in various body fluids under normal conditions and their stability as well as their dysregulation in disease opens up a new field for biomarker study. However, diurnal and day-to-day variation in plasma microRNA levels, and differential regulation between males and females, may affect biomarker stability. A QuantStudio 12K Flex Real-Time PCR System was used to profile plasma microRNA levels using OpenArray in male and female healthy volunteers, in the morning and afternoon, and at four time points over a one month period. Using this system we were able to run four OpenArray plates in a single run, the equivalent of 32 traditional 384-well qPCR plates or 12,000 data points. Up to 754 microRNAs can be identified in a single plasma sample in under two hours. 108 individual microRNAs were identified in at least 80% of all our samples which compares favourably with other reports of microRNA profiles in serum or plasma in healthy adults. Many of these microRNAs, including miR-16-5p, miR-17-5p, miR-19a-3p, miR-24-3p, miR-30c-5p, miR-191-5p, miR-223-3p and miR-451a are highly expressed and consistent with previous studies using other platforms. Overall, microRNA levels were very consistent between individuals, males and females, and time points and we did not detect significant differences in levels of microRNAs. These results suggest the suitability of this platform for microRNA profiling and biomarker discovery and suggest minimal confounding influence of sex or sample timing. However, the platform has not been subjected to rigorous validation which must be demonstrated in future biomarker studies where large differences may exist between disease and control samples.


Subject(s)
Biomarkers/blood , Circadian Rhythm/genetics , Gene Expression Profiling , Gene Expression Regulation, Neoplastic , High-Throughput Screening Assays , MicroRNAs/genetics , Real-Time Polymerase Chain Reaction/methods , Adult , Female , Healthy Volunteers , Humans , Male , MicroRNAs/blood , Reproducibility of Results , Reverse Transcriptase Polymerase Chain Reaction , Sex Factors , Time Factors
17.
Sci Rep ; 5: 17486, 2015 Dec 03.
Article in English | MEDLINE | ID: mdl-26631939

ABSTRACT

The ATP-gated ionotropic P2X7 receptor (P2X7R) modulates glial activation, cytokine production and neurotransmitter release following brain injury. Levels of the P2X7R are increased in experimental and human epilepsy but the mechanisms controlling P2X7R expression remain poorly understood. Here we investigated P2X7R responses after focal-onset status epilepticus in mice, comparing changes in the damaged, ipsilateral hippocampus to the spared, contralateral hippocampus. P2X7R-gated inward currents were suppressed in the contralateral hippocampus and P2rx7 mRNA was selectively uploaded into the RNA-induced silencing complex (RISC), suggesting microRNA targeting. Analysis of RISC-loaded microRNAs using a high-throughput platform, as well as functional assays, suggested the P2X7R is a target of microRNA-22. Inhibition of microRNA-22 increased P2X7R expression and cytokine levels in the contralateral hippocampus after status epilepticus and resulted in more frequent spontaneous seizures in mice. The major pro-inflammatory and hyperexcitability effects of microRNA-22 silencing were prevented in P2rx7(-/-) mice or by treatment with a specific P2X7R antagonist. Finally, in vivo injection of microRNA-22 mimics transiently suppressed spontaneous seizures in mice. The present study supports a role for post-transcriptional regulation of the P2X7R and suggests therapeutic targeting of microRNA-22 may prevent inflammation and development of a secondary epileptogenic focus in the brain.


Subject(s)
Hippocampus/physiology , MicroRNAs/genetics , Receptors, Purinergic P2X7/genetics , Status Epilepticus/genetics , Animals , Astrocytes/pathology , Electroencephalography , Gene Expression Regulation , Hippocampus/physiopathology , Inflammation/genetics , Inflammation/metabolism , Male , Mice, Inbred C57BL , MicroRNAs/metabolism , RNA Interference , RNA-Induced Silencing Complex/genetics , RNA-Induced Silencing Complex/metabolism , Receptors, Purinergic P2X7/metabolism , Status Epilepticus/metabolism , Status Epilepticus/physiopathology
18.
J Mol Neurosci ; 56(2): 255-62, 2015 Jun.
Article in English | MEDLINE | ID: mdl-25854777

ABSTRACT

Recent studies demonstrated that overexpression of the molecular chaperone 14-3-3ζ protects the brain against endoplasmic reticulum (ER) stress and prolonged seizures. The 14-3-3 targets responsible for improved neuronal survival after seizures remain unknown. Here we explored the mechanism, finding that protein levels of the ER-stress-associated transcription factor C/EBP homologous protein (CHOP) were significantly higher in 14-3-3ζ-overexpressing mice. Since previous studies by us demonstrated that loss of CHOP increased vulnerability to seizure damage, we explored whether elevated CHOP levels result from 14-3-3ζ overexpression and contribute to the protection. Pull-down experiments suggested that 14-3-3ζ could bind CHOP as well as sequester a CHOP-targeting microRNA. However, 14-3-3ζ overexpression remained protective against seizure-induced hippocampal injury in mice lacking CHOP. These studies reveal a novel function for 14-3-3ζ in regulating CHOP levels but show that this is not required for protection against seizure-induced neuronal death.


Subject(s)
14-3-3 Proteins/metabolism , Hippocampus/metabolism , Status Epilepticus/metabolism , Transcription Factor CHOP/metabolism , 14-3-3 Proteins/genetics , Animals , Mice , Mice, Inbred C57BL , MicroRNAs/metabolism , Protein Binding , Transcription Factor CHOP/genetics
19.
CNS Neurosci Ther ; 20(6): 556-64, 2014 Jun.
Article in English | MEDLINE | ID: mdl-24750893

ABSTRACT

AIMS: Early-life seizures, particularly when prolonged, may be harmful to the brain. Current pharmacotherapy is often ineffective; therefore, novel neuro- and/or glio-transmitter systems should be explored for targeting. The P2X7 receptor is a cation-permeable channel with trophic and excitability effects on neurons and glia which is activated by high amounts of ATP that may be released in the setting of injury after severe seizures. Here, we tested the effects of A-438079, a potent and selective P2X7 receptor antagonist in a lesional model of early-life status epilepticus. METHODS: Seizures were induced by intra-amygdala kainic acid in 10-day-old rat pups. Electrographic seizure severity, changes to P2X7 receptor expression, inflammatory responses and histological effects were evaluated. RESULTS: Seizures induced by intra-amygdala kainic acid increased levels of P2X7 receptor protein and interleukin-1ß and caused significant cell death within the ipsilateral hippocampus. A-438079 rapidly reached the brain following systemic injection in P10 rats. Intraperitoneal injection of A-438079 (5 and 15 mg/kg) 60 min after triggering seizures reduced seizure severity and neuronal death within the hippocampus. A-438079 had superior neuroprotective effects compared with an equally seizure-suppressive dose of phenobarbital (25 mg/kg). CONCLUSIONS: These results suggest P2X7 receptor antagonists may be suitable as frontline or adjunctive treatments of pediatric status epilepticus or other early-life seizures, particularly when associated with brain damage.


Subject(s)
Hippocampus/drug effects , Purinergic P2X Receptor Antagonists/therapeutic use , Pyridines/therapeutic use , Status Epilepticus/drug therapy , Status Epilepticus/pathology , Tetrazoles/therapeutic use , Amygdala/injuries , Amygdala/physiology , Animals , Animals, Newborn , Bumetanide/pharmacology , Bumetanide/therapeutic use , Cell Death/drug effects , Disease Models, Animal , Disease Progression , Dose-Response Relationship, Drug , Excitatory Amino Acid Agonists/toxicity , Female , Hippocampus/metabolism , Kainic Acid/toxicity , Male , Pyridines/metabolism , Quinazolines , Rats , Rats, Sprague-Dawley , Sodium Potassium Chloride Symporter Inhibitors/pharmacology , Sodium Potassium Chloride Symporter Inhibitors/therapeutic use , Status Epilepticus/chemically induced , Tetrazoles/metabolism
20.
Article in English | MEDLINE | ID: mdl-25755840

ABSTRACT

The C/EBP homologous protein CHOP is normally present at low levels in cells but increases rapidly after insults such as DNA damage or endoplasmatic reticulum stress where it contributes to cellular homeostasis and apoptosis. By forming heterodimers with other transcription factors, CHOP can either act as a dominant-negative regulator of gene expression or to induce the expression of target genes. Recent work demonstrated that seizure-induced hippocampal damage is significantly worse in mice lacking CHOP and these animals go on to develop an aggravated epileptic phenotype. To identify novel CHOP-controlled target genes which potentially influence the epileptic phenotype, we performed a bioinformatics analysis of tissue microarrays from chop-deficient mice after prolonged seizures. GO analysis revealed genes associated with biological membranes were prominent among those in the chop-deficient array dataset and we identified myelin-associated genes to be particularly de-repressed. These data suggest CHOP might act as an inhibitor of myelin-associated processes in the brain and could be targeted to influence axonal regeneration or reorganisation.

SELECTION OF CITATIONS
SEARCH DETAIL
...