Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Regen Ther ; 18: 418-429, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34722838

ABSTRACT

The objective of this study is to evaluate the possibility of gelatin hydrogel nonwoven fabrics (GHNF) of a cell culture scaffold to formulate 3-dimensional (3D) cell construct. The thickness of cell construct is about 1 mm and the cells inside are live and bio-active, irrespective of their internal distribution. The GHNF were prepared by the solution blow method of gelatin, following by dehydrothermal crosslinking. The GHNF showed a mechanical strength strong enough not to allow the shape to deform even in a wet state. The wet GHNF also showed resistance against repeated compression. After human mesenchymal stromal cells (hMSC) were seeded and cultured, the inner distribution in GHNF, the apoptosis, hypoxia inducible factor (HIF)-1α, Ki67, collagen or sulfated glycosaminoglycan (sGAG) secretion of cells were evaluated. The hMSC proliferated inside the GHNF with time while a homogeneous distribution in the number of cells proliferated from the surface to the 1000 µm depth of GHNF was observed. The number of apoptosis and HIF-1α positive cells was significantly low compared with that of polypropylene nonwoven fabrics with the similar fiber diameters and intra-structure. The GHNF were degraded during cell culture, and completely replaced by collagen and sGAG secreted. It is concluded that the GHNF is a promising cell culture scaffold for 3D cell constructs.

2.
J Atheroscler Thromb ; 27(12): 1299-1309, 2020 Dec 01.
Article in English | MEDLINE | ID: mdl-32101838

ABSTRACT

AIM: Synthetic vascular grafts are widely used in surgical revascularization, mainly for medium- to large-sized vessels. However, synthetic grafts smaller than 6 mm in diameter are associated with a high incidence of thrombosis. In this study, we evaluated silk fibroin, a major protein of silk, with high biocompatibility and biodegradability, as a useful material for extremely-small-diameter vascular grafts. METHODS: A small-sized (0.9 mm inner diameter) graft was braided from a silk fibroin thread. The right carotid arteries of 8- to 14-week-old male C57BL/6 mice were cut at the midpoint, and fibroin grafts (5- to 7-mm in length) were transplanted using a cuff technique with polyimide cuffs. The grafts were harvested at different time points and analyzed histologically. RESULTS: CD31+ endothelial cells had already started to proliferate at 2 weeks after implantation. At 4 weeks, neointima had formed with α-smooth muscle actin+ cells, and the luminal surface was covered with CD31+endothelial cells. Mac3+ macrophages were accumulated in the grafts. Graft patency was confirmed at up to 6 months after implantation. CONCLUSION: This mouse model of arterial graft implantation enables us to analyze the remodeling process and biocompatibility of extremely-small-diameter vascular grafts. Biodegradable silk fibroin might be applicable for further researches using genetically modified mice.


Subject(s)
Absorbable Implants , Biocompatible Materials/chemistry , Blood Vessel Prosthesis , Fibroins/chemistry , Animals , Blood Vessel Prosthesis Implantation , Cell Proliferation , Endothelial Cells/cytology , Male , Mice, Inbred C57BL , Vascular Patency
4.
Tissue Eng Part C Methods ; 25(6): 344-352, 2019 06.
Article in English | MEDLINE | ID: mdl-31062648

ABSTRACT

IMPACT STATEMENT: This study introduces the utility of gelatin hydrogel nonwoven fabrics (GHNFs) for cell sheet engineering. The GHNF had the mechanical property strong enough to hold by forceps even in the swollen condition. The cell sheet harvest and transfer processes were performed simpler and faster than those without using the GHNF. The GHNF facilitates the metabolic activity of three-layered cell sheets, and the cell migration from cell sheets into the GHNF was observed. The GHNF is a promising material used to support cell sheets during the process of assemble formulation and contributes to the improved biological functions of tissue-like cell constructs.


Subject(s)
Cell Culture Techniques/methods , Gelatin/pharmacology , Hydrogels/pharmacology , Mesenchymal Stem Cells/cytology , Adenosine Triphosphate/metabolism , Cell Adhesion/drug effects , Deoxyglucose/metabolism , Humans , Mesenchymal Stem Cells/drug effects , Time Factors
5.
J Mater Chem B ; 3(35): 7109-7116, 2015 Sep 21.
Article in English | MEDLINE | ID: mdl-32262713

ABSTRACT

Bombyx mori silk fibroin (SF) was successfully used for vascular grafts implanted in rats or dogs. Current transgenic technology can be developed to produce SF with improved properties. In this study, the vascular endothelial growth factor (VEGF) or the repeated fibronectin-derived sequence, TGRGDSPAS, and arginylglycylaspartic acid (RGD) were introduced into the SF heavy chain to improve its properties. A blood compatibility assay was performed to study lactose dehydrogenase (LDH) activity for both transgenic and wild type SF. Growth of human umbilical endothelial cells (HUVECs) showed greater enhancement of cellularization behaviour for the transgenic SF samples (VEGF and RGD) than for the wild type (WT) SF. VEGF SF also showed lower platelet adhesion than the RGD SF and WT SF. An in vivo implantation study supported these in vitro results. In particular, early endothelialisation was observed for VEGF transgenic SF, including the occurrence of native tissue organization at three months after implantation in rat abdominal aorta.

6.
J Mater Chem B ; 2(42): 7375-7383, 2014 Nov 14.
Article in English | MEDLINE | ID: mdl-32261962

ABSTRACT

Interest in vascular grafts has recently grown because more patients are undergoing procedures that involve these grafts. However, smaller grafts with diameters <6 mm made from conventional biomaterials are associated with a high incidence of thrombosis, and therefore the development of improved materials suitable for small vascular grafts is highly desirable. In this paper, four kinds of recombinant Bombyx mori silk fibroins were prepared using transgenic techniques for use as silk vascular graft with a diameter of <6 mm. The peptide sequence TS(CDPGYIGSRAS)8 derived from the laminin B1 chain or the combination of two kinds of sequences, TS(CDPGYIGSRAS)8 and (TGRGDSPAS)8 derived from fibronectin, was incorporated into the light (L)-chain or the heavy (H)-chain of the silk fibroin. The fractions of the incorporated peptide sequences range from 0.8% to 7.2% by weight in the recombinant silk fibroins. This incorporation causes a very small increase in the random coil fraction of silk fibroin and a decrease in the tensile strength. Compared with native silk fibroin, the adhesive activities of mouse endothelial and smooth muscle cells increase significantly with the recombinant silk fibroin films incorporating only the TS(CDPGYIGSRAS)8 sequence independent of the L- or H-chains. A similar tendency was observed for the high migration activities of the endothelial cells in vitro and also the longer migration distance of the endothelial cell from the anastomotic part of rat abdominal aorta in vivo when this recombinant silk fibroin was used as a coating material for the silk graft. In view of the results, the recombinant silk fibroin incorporating the laminin peptide sequence can be potentially used as a vascular graft material.

SELECTION OF CITATIONS
SEARCH DETAIL
...