Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
PLoS One ; 18(2): e0278289, 2023.
Article in English | MEDLINE | ID: mdl-36795645

ABSTRACT

Drug repositioning allows expedited discovery of new applications for existing compounds, but re-screening vast compound libraries is often prohibitively expensive. "Connectivity mapping" is a process that links drugs to diseases by identifying compounds whose impact on expression in a collection of cells reverses the disease's impact on expression in disease-relevant tissues. The LINCS project has expanded the universe of compounds and cells for which data are available, but even with this effort, many clinically useful combinations are missing. To evaluate the possibility of repurposing drugs despite missing data, we compared collaborative filtering using either neighborhood-based or SVD imputation methods to two naive approaches via cross-validation. Methods were evaluated for their ability to predict drug connectivity despite missing data. Predictions improved when cell type was taken into account. Neighborhood collaborative filtering was the most successful method, with the best improvements in non-immortalized primary cells. We also explored which classes of compounds are most and least reliant on cell type for accurate imputation. We conclude that even for cells in which drug responses have not been fully characterized, it is possible to identify unassayed drugs that reverse in those cells the expression signatures observed in disease.


Subject(s)
Drug Repositioning , Research Design , Drug Repositioning/methods
2.
Sci Rep ; 11(1): 8921, 2021 04 26.
Article in English | MEDLINE | ID: mdl-33903632

ABSTRACT

GDF15 is a distant TGF-ß family member that induces anorexia and weight loss. Due to its function, GDF15 has attracted attention as a potential therapeutic for the treatment of obesity and its associated metabolic diseases. However, the pharmacokinetic and physicochemical properties of GDF15 present several challenges for its development as a therapeutic, including a short half-life, high aggregation propensity, and protease susceptibility in serum. Here, we report the design, characterization and optimization of GDF15 in an Fc-fusion protein format with improved therapeutic properties. Using a structure-based engineering approach, we combined knob-into-hole Fc technology and N-linked glycosylation site mutagenesis for half-life extension, improved solubility and protease resistance. In addition, we identified a set of mutations at the receptor binding site of GDF15 that show increased GFRAL binding affinity and led to significant half-life extension. We also identified a single point mutation that increases p-ERK signaling activity and results in improved weight loss efficacy in vivo. Taken together, our findings allowed us to develop GDF15 in a new therapeutic format that demonstrates better efficacy and potential for improved manufacturability.


Subject(s)
Glial Cell Line-Derived Neurotrophic Factor Receptors/metabolism , Growth Differentiation Factor 15/pharmacology , Immunoglobulin Fc Fragments/pharmacology , Recombinant Fusion Proteins/pharmacology , Weight Loss/drug effects , Animals , CHO Cells , Cricetulus , Glial Cell Line-Derived Neurotrophic Factor Receptors/genetics , Glycosylation , Humans , Mice , Point Mutation , Protein Engineering
SELECTION OF CITATIONS
SEARCH DETAIL
...