Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 20
Filter
Add more filters










Publication year range
1.
J Colloid Interface Sci ; 608(Pt 1): 564-574, 2022 Feb 15.
Article in English | MEDLINE | ID: mdl-34626996

ABSTRACT

Many-body forces play a prominent role in structure and dynamics of matter, but their role is not well understood in many cases due to experimental challenges. Here, we demonstrate that a novel experimental system based on rotating electric fields can be utilised to deliver unprecedented degree of control over many-body interactions between colloidal silica particles in water. We further show that we can decompose interparticle interactions explicitly into the leading terms and study their specific effects on phase behaviour. We found that three-body interactions exert critical influence over the phase diagram domain boundaries, including liquid-gas binodal, critical and triple points. Phase transitions are shown to be reversible and fully controlled by the magnitude of external rotating electric field governing the tunable interactions. Our results demonstrate that colloidal systems in rotating electric fields are a unique laboratory to study the role of many-body interactions in physics of phase transitions and in applications, such as self-assembly, offering exciting opportunities for studying generic phenomena inherent to liquids and solids, from atomic to protein and colloidal systems.


Subject(s)
Colloids , Laboratories , Electricity , Phase Transition , Water
2.
Sci Rep ; 11(1): 17963, 2021 09 09.
Article in English | MEDLINE | ID: mdl-34504154

ABSTRACT

Melting is one of the most studied phase transitions important for atomic, molecular, colloidal, and protein systems. However, there is currently no microscopic experimentally accessible criteria that can be used to reliably track a system evolution across the transition, while providing insights into melting nucleation and melting front evolution. To address this, we developed a theoretical mean-field framework with the normalised mean-square displacement between particles in neighbouring Voronoi cells serving as the local order parameter, measurable experimentally. We tested the framework in a number of colloidal and in silico particle-resolved experiments against systems with significantly different (Brownian and Newtonian) dynamic regimes and found that it provides excellent description of system evolution across melting point. This new approach suggests a broad scope for application in diverse areas of science from materials through to biology and beyond. Consequently, the results of this work provide a new guidance for nucleation theory of melting and are of broad interest in condensed matter, chemical physics, physical chemistry, materials science, and soft matter.

3.
ACS Appl Mater Interfaces ; 13(17): 19701-19709, 2021 May 05.
Article in English | MEDLINE | ID: mdl-33900738

ABSTRACT

In modern biomedical science and developmental biology, there is significant interest in optical tagging to study individual cell behavior and migration in large cellular populations. However, there is currently no tagging system that can be used for labeling individual cells on demand in situ with subsequent discrimination in between and long-term tracking of individual cells. In this article, we demonstrate such a system based on photoconversion of the fluorescent dye rhodamine B co-confined with carbon nanodots in the volume of micron-sized polyelectrolyte capsules. We show that this new fluorescent convertible capsule coding system is robust and is actively uptaken by cell lines while demonstrating low toxicity. Using a variety of cellular lines, we demonstrate how this tagging system can be used for code-like marking and long-term tracking of multiple individual cells in large cellular populations.


Subject(s)
Cell Tracking , Fluorescent Dyes/chemistry , Rhodamines/chemistry , Animals , Carbon/chemistry , Cell Line , Cell Line, Tumor , Humans , Mice , Optical Imaging , Polymers/chemistry , Quantum Dots/chemistry
4.
Sci Rep ; 10(1): 19668, 2020 11 12.
Article in English | MEDLINE | ID: mdl-33184321

ABSTRACT

Using a combination of experimental Raman, FTIR, UV-VIS absorption and emission data, together with the corresponding DFT calculations we propose the mechanism of modification of the folic acid specifically under the hydrothermal treatment at 200 °C. We established that folic acid breaks down into fragments while the pteridine moiety remains intact likely evolving into 6-formylpterin with the latter responsible for the increase in fluorescence emission at 450 nm. The results suggest that hydrothermal approach can be used for production of other purpose-engineered fluorophores.

5.
Phys Rev Lett ; 125(12): 125501, 2020 Sep 18.
Article in English | MEDLINE | ID: mdl-33016757

ABSTRACT

The change in dispersion of high-frequency excitations in fluids, from an oscillating solidlike to a monotonic gaslike one, is shown for the first time to affect thermal behavior of heat capacity and the q-gap width in reciprocal space. With in silico study of liquified noble gases, liquid iron, liquid mercury, and model fluids, we established universal bilinear dependence of heat capacity on q-gap width, whereas the crossover precisely corresponds to the change in the excitation spectra. The results open novel prospects for studies of various fluids, from simple to molecular liquids and melts.

6.
Nanoscale ; 12(37): 19325-19332, 2020 Oct 01.
Article in English | MEDLINE | ID: mdl-32936194

ABSTRACT

Magic-size clusters are ultra-small colloidal semiconductor systems that are intensively studied due to their monodisperse nature and sharp UV-vis absorption peak compared with regular quantum dots. However, the small size of such clusters (<2 nm), and the large surface-to-bulk ratio significantly limit characterisation techniques that can be utilised. Here we demonstrate how a combination of EXAFS and XANES analyses can be used to obtain information about sample stoichiometry and cluster symmetry. Investigating two types of clusters that show sharp UV-vis absorption peaks at 311 nm and 322 nm, we found that both samples possess approximately 2 : 1 Cd : S ratio and have similar nearest-neighbour structural arrangements. However, both samples demonstrate a significant departure from the tetrahedral structural arrangement, with an average bond angle determined to be around 106.1° showing a bi-fold bond angle distribution. Our results suggest that both samples are quasi-isomers - their core structures have identical chemical compositions, but different atomic arrangements with distinct bond angle distributions.

7.
J Mater Chem B ; 8(35): 7977-7986, 2020 09 21.
Article in English | MEDLINE | ID: mdl-32756699

ABSTRACT

Non-destructive, controllable, remote light-induced release inside cells enables studying of time- and space-specific surface-mediated delivery of bioactive compounds, which is an important approach in a wide range of biomedical tasks, especially those related to the control of cell growth, regenerative medicine, and self-disinfecting structures such as catheters. In this regard, the elaboration of encapsulation and controlled release of oxidative species is in high demand due to its versatile applications. One of the obvious candidates for such species is hydrogen peroxide. However, the delivery of hydrogen peroxide to the site of interest with high temporal and spatial precision remains challenging due to the active and unstable nature of the substance. We hereby present an approach to encapsulate and store a hydrogen peroxide-containing solid compound (sodium percarbonate) in the free-standing arrays of biopolymer-based microchambers. In this regard, we use solid-state encapsulation enabling high payload ability, followed by isolated storage in order to prevent contact of the cargo with water. Monitoring of the release profiles reveals the encapsulation of sodium percarbonate with little leakage for up to 24 hours. Microchambers are fabricated with predetermined size and spatial distribution, which allows the release of extremely small amounts of cargo (10-30 pg) with high spatial accuracy. Microchambers are made of polylactic acid and functionalized by carbon nanodots, which provide biocompatibility and biodegradability of the whole system together with responsiveness towards NIR light. These chambers facilitate both ultrasound-assisted burst release and laser-driven carbon nanoparticle-assisted precise release of extremely small, controlled amounts of a few picograms of hydrogen peroxide in submerged conditions. Microchambers loaded with sodium percarbonate provided adhesion and high viability of mouse fibroblasts over 24 h of exposure. The developed system opens an exciting avenue for prospective delivery routes in a number of areas such as wound healing by time and site-specific release.


Subject(s)
Carbon/chemistry , Drug Carriers/chemistry , Drug Liberation , Hydrogen Peroxide/chemistry , Nanoparticles/chemistry , Polyesters/chemistry , Animals , Carbonates/chemistry , Cell Survival/drug effects , Drug Carriers/toxicity , Fibroblasts/cytology , Fibroblasts/drug effects , Materials Testing , Mice
8.
Phys Rev E ; 101(6-1): 063205, 2020 Jun.
Article in English | MEDLINE | ID: mdl-32688518

ABSTRACT

Newton's third law-the action-reaction symmetry-can be violated for effective interbody forces in open and nonequilibrium systems that are ubiquitous in areas as diverse as complex plasmas, colloidal suspensions, active and living soft matter, and social behavior. While studying monolayer complex plasma (confined charged particles in an ionized gas) with nonreciprocal interactions mediated by plasma flows, in silico we found that an interplay between melting and thermal activation drastically transforms the collective dynamics: the order-disorder transition modifies the system's thermal steady state so that the crystal tends to melt, whereas the fluid tends to freeze, jumping chaotically between the two states. We identified this collective chaotic behavior as strange attractors formed in a monolayer complex plasma and link the strange attractor behavior to the specifics of interparticle interactions.

9.
J Phys Chem Lett ; 11(4): 1370-1376, 2020 Feb 20.
Article in English | MEDLINE | ID: mdl-31999463

ABSTRACT

A significant number of key properties of condensed matter are determined by the spectra of elementary excitations and, in particular, collective vibrations. However, the behavior and description of collective modes in disordered media (e.g., liquids and glasses) remains a challenging area of modern condensed matter science. Recently, anticrossing between longitudinal and transverse modes was predicted theoretically and observed in molecular dynamics simulations, but this fundamental phenomenon has never been observed experimentally. Here we demonstrate the mode anticrossing in a simple Yukawa fluid constructed from charged microparticles in weakly ionized gas. Theory, simulations, and experiments show clear evidence of mode anticrossing that is accompanied by mode hybridization and strong redistribution of the excitation spectra. Our results provide a significant advance in understanding excitations of fluids, opening new perspectives for studies of dynamics, thermodynamics, and transport phenomena in a wide variety of systems from noble-gas fluids and metallic melts to strongly coupled plasmas and molecular and complex fluids.

10.
Adv Colloid Interface Sci ; 274: 102043, 2019 Dec.
Article in English | MEDLINE | ID: mdl-31689681

ABSTRACT

Nowadays luminescent carbon-based nanoparticles can be synthesized by a wide range of physical and chemical methods from a large variety of carbon-based sources. However, in most of the cases the product of synthesis is a complex mixture of compounds, which results in significant challenges in understanding the structure and optical properties of the reaction products. Consequently, a number of separation and purification methodologies have been developed to alleviate these challenges. In this review, we provide a detailed analysis of the current state of the art for methods of luminescent carbon nanoparticles separation and purification. We specifically target such methods as sucrose density gradient centrifugation, chromatography techniques, and electrophoresis because of their ability for fine separation of the reaction products with into a number of fractions. The aim of our comparative analysis is to help development of future strategies for reaction product separation and purification leading to a better understanding of carbon nanoparticles structure and luminescent mechanism as well as to underpin their applications.

11.
Phys Rev E ; 100(2-1): 023203, 2019 Aug.
Article in English | MEDLINE | ID: mdl-31574655

ABSTRACT

Defects play a crucial role in physics of solids, affecting their mechanical, electromagnetic, and chemical properties. However, influence of thermal defects on wave propagation in exothermic reactions (flame fronts) still remains poorly understood at the molecular level. Here, we show that thermal behavior of the defects exhibits essential features of double-step exothermic reactions with preequilibrium. We use experiments with monolayer complex (dusty) plasma and find that it can show a double-step activation thermal behavior, similar to chemically reactive media. Furthermore, we demonstrate capabilities to control flame fronts using defects and the different dynamic regimes of the thermal defects in complex (dusty) plasmas, from a nonactivated one to being sound and self-activated (like in active soft matter). The results suggest that a range of challenging phenomena at the forefront of modern science (e.g., defect activation, flame front dynamics, reaction waves, etc.) can now be experimentally interrogated on a microscopic scale.

12.
Sci Rep ; 9(1): 14665, 2019 10 11.
Article in English | MEDLINE | ID: mdl-31605021

ABSTRACT

We investigated light emission of hydrothermally treated citric acid and ethylenediamine (EDA) with various precursor ratios using gel-electrophoresis. We show that this relatively simple approach can deliver significant insights into the origins of photoluminescence. We found that products of the synthesis consist of both positively and negatively charged species and exhibit large dispersion in electrophoretic mobility (i.e. charge-to-size ratio). We observed that despite the large dispersion of the reaction products the blue light emission is confined to discrete bands clearly identifiable in the gel. We demonstrate clear evidence that this emission originates from the negatively charged light molecular fraction with the highest mobility which shows no excitation-dependent light emission. This molecular fluorophore exhibits spectral characteristics similar to previously reported 1,2,3,5-tetrahydro-5-oxo-imidazo[1,2-a]pyridine-7-carboxylic acid (IPCA). Secondary gel electrophoresis run performed on the bands extracted from the first run indicates that no further separation takes place. On the basis of our experimental results, we conclude that relatively stable binding exists between IPCA and EDA-derived product. Thus, the products of the reaction contain IPCA both in molecular form and in complexes with EDA-derived products. We conclude that excitation-dependent emission is related to the fluorophore binding to the positively charged EDA-derived products with a positive charge.

13.
J Chem Phys ; 151(11): 114502, 2019 Sep 21.
Article in English | MEDLINE | ID: mdl-31542035

ABSTRACT

Accurate analysis of pair correlations in condensed matter allows us to establish relations between structures and thermodynamic properties and, thus, is of high importance for a wide range of systems, from solids to colloidal suspensions. Recently, the interpolation method (IM) that describes satisfactorily the shape of pair correlation peaks at short and at long distances has been elaborated theoretically and using molecular dynamics simulations, but it has not been verified experimentally as yet. Here, we test the IM by particle-resolved studies with colloidal suspensions and with complex (dusty) plasmas and demonstrate that, owing to its high accuracy, the IM can be used to experimentally measure parameters that describe interaction between particles in these systems. We used three- and two-dimensional colloidal crystals and monolayer complex (dusty) plasma crystals to explore suitability of the IM in systems with soft to hard-sphere-like repulsion between particles. In addition to the systems with pairwise interactions, if many-body interactions can be mapped to the pairwise ones with some effective (e.g., density-dependent) parameters, the IM could be used to obtain these parameters. The results reliably show that the IM can be effectively used for analysis of pair correlations and interactions in a wide variety of systems and therefore is of broad interest in condensed matter, complex plasma, chemical physics, physical chemistry, materials science, and soft matter.

14.
Colloids Surf B Biointerfaces ; 181: 533-538, 2019 Sep 01.
Article in English | MEDLINE | ID: mdl-31185445

ABSTRACT

A new fundamental concept for one-step in-situ functionalization of gold nanoparticles (GNPs) with folic acid using hydrothermal treatment is described. Hydrothermal treatment has been tuned to increase the light emission from the pterin moiety of folic acid molecule, while retain its structure and functionality, thus providing a simple route to multimodal tags for a variety of in vitro and in vivo biomedical applications. Successful functionalization of GNPs with the biological ligand is confirmed by specific binding with anti-folic acid antibody.


Subject(s)
Folic Acid/chemistry , Gold/chemistry , Metal Nanoparticles/chemistry , Temperature , Animals , Cattle , Immunoglobulin G/chemistry , Mice , Molecular Structure , Serum Albumin, Bovine/chemistry
15.
Soft Matter ; 14(44): 9012-9019, 2018 Nov 14.
Article in English | MEDLINE | ID: mdl-30378616

ABSTRACT

Carbon dots (CDs) are usually used as an alternative to other fluorescent nanoparticles. Apart from fluorescence, CDs also have other important properties for use in composite materials, first of all their ability to absorb light energy and convert it into heat. In our work, for the first time, CDs have been proposed as an alternative to gold nanostructures for harvesting light energy, which results in the opening of polymer-based containers with biologically active compounds. In this paper, we propose a method for the synthesis of polylactic acid microchamber arrays with embedded CDs. A comparative analysis was made of the damage to microchambers functionalized with gold nanorods and with CD aggregates, depending on the wavelength and power of the laser used. The release of fluorescent cargo from the microchamber arrays with CD aggregates under laser exposure was demonstrated.

16.
Sci Rep ; 8(1): 9394, 2018 Jun 20.
Article in English | MEDLINE | ID: mdl-29925932

ABSTRACT

Synthesis of carbon nanodots (CNDs) in confined geometry via incorporation of dextran sulphate into pores of CaCO3 microparticles is demonstrated. The preparation process included three steps: co-precipitation of solutions of inorganic salts and carbon source, thermal treatment and CaCO3 matrix removal. We show that geometric constraints can be used to precisely control the amount of source material and to avoid formation of large carbon particles. Analysis of TEM data shows particle size of ~3.7 nm with narrow size distribution. Furthermore, we found that variation in pore morphology has a clear effect on CNDs structure and optical properties. CNDs with graphene oxide like structure were obtained in the nanoporous outer shell layer of CaCO3 microparticles, while less ordered CNDs with the evidence of complex disordered carbons were extracted from the inner microcavity. These results suggest that confined volume synthesis route in CaCO3 nanopores can be used to precisely control the structure and optical properties of CNDs.

17.
Opt Express ; 25(4): 4240-4253, 2017 Feb 20.
Article in English | MEDLINE | ID: mdl-28241630

ABSTRACT

We demonstrate a spectroscopic imaging based super-resolution approach by separating the overlapping diffraction spots into several detectors during a single scanning period and taking advantage of the size-dependent emission wavelength in nanoparticles. This approach has been tested using off-the-shelf quantum dots (Invitrogen Qdot) and in-house novel ultra-small (~3 nm) Ge QDs. Furthermore, we developed a method-specific Gaussian fitting and maximum likelihood estimation based on a Matlab algorithm for fast QD localisation. This methodology results in a three-fold improvement in the number of localised QDs compared to non-spectroscopic images. With the addition of advanced ultra-small Ge probes, the number can be improved even further, giving at least 1.5 times improvement when compared to Qdots. Using a standard scanning confocal microscope we achieved a data acquisition rate of 200 ms per image frame. This is an improvement on single molecule localisation super-resolution microscopy where repeated image capture limits the imaging speed, and the size of fluorescence probes limits the possible theoretical localisation resolution. We show that our spectral deconvolution approach has a potential to deliver data acquisition rates on the ms scale thus providing super-resolution in live systems.


Subject(s)
Fluorescence , Quantum Dots , Spectrometry, Fluorescence , Likelihood Functions
18.
ACS Nano ; 10(10): 9608-9615, 2016 Oct 25.
Article in English | MEDLINE | ID: mdl-27684330

ABSTRACT

Designing and fabricating multifunctional nanocomposite microcapsules are considerable interests in both academic and industrial research aspects. This work first reports an innovative approach to in situ synthesize and assemble fluorescent carbon dots (CDs) into polyelectrolyte microcapsules, obtaining highly biocompatible nanocomposite microcapsules with excellent luminescence that facilitate imaging and identification in vitro, yet with the feasibility to load small molecules and ultrasound responsiveness to trigger their release. CDs are produced in situ in (PAH/PSS)4 microcapsule shells by carbonization of dextran molecules under relatively mild hydrothermal treatment. Compared with the collapsed and film-like (PAH/PSS)4 microcapsules, the novel composite microcapsules show a free-standing structure, smaller size, and thicker shell. CDs are proven to be fabricated and embedded in PAH/PSS multilayers, and the formed PAH/PSS/CD microcapsules are endowed with strong luminescence, as verified by the transmission electron microscopy, fluorescence spectra, and confocal laser scanning microscopy results. The in situ formation of CDs in capsule shells also empowers these capsules with ultrasound responsiveness and reduced permeability. The feasibility of encapsulation of small molecules (rhodamine B) and ultrasound-triggered release is also shown. Most importantly, due to the intrinsic biocompatible property and photostability of CDs, these fluorescent PAH/PSS/CD microcapsules show negligible cell toxicity and low photobleaching, which are impossible for capsules composited with conventional organic dyes and semiconductor quantum dots.

19.
Macromol Biosci ; 11(6): 848-54, 2011 Jun 14.
Article in English | MEDLINE | ID: mdl-21504068

ABSTRACT

Neuron cells uptake of biodegradable and synthetic polymeric microcapsules functionalized with aggregates of gold nanoparticles incorporated into their shells is demonstrated in situ. In addition to traditionally used optical microscopy, electron microscopy is used both for higher-resolution imaging and for confirming the uptake by focused ion beam cross-sectioning of specific cells in situ. Subsequently, physical methods of release are compared to chemical methods wherein laser-induced intracellular release of dextran molecules into the cytosol of hippocampal neuron cells is studied in comparison to biodegradation. Implications of this work for neuroscience, bio-medicine and single cell studies are discussed.


Subject(s)
Biocompatible Materials/metabolism , Capsules , Dextrans/metabolism , Drug Delivery Systems/methods , Fluorescein-5-isothiocyanate/analogs & derivatives , Molecular Imaging/methods , Neurons/pathology , Polymers/metabolism , Animals , Biocompatible Materials/chemical synthesis , Biological Transport , Calcium Carbonate/chemistry , Capsules/chemical synthesis , Capsules/metabolism , Capsules/radiation effects , Cell Line, Tumor , Dextrans/analysis , Drug Compounding/methods , Fluorescein-5-isothiocyanate/analysis , Fluorescein-5-isothiocyanate/metabolism , Gold/chemistry , Hippocampus/cytology , Lasers , Light , Microscopy, Electron, Transmission , Nanoparticles/chemistry , Polymers/chemical synthesis , Rats , Silicon Dioxide/chemistry , Surface Properties/radiation effects
20.
Biomaterials ; 27(6): 842-6, 2006 Feb.
Article in English | MEDLINE | ID: mdl-16098578

ABSTRACT

We present a scanning electron microscopy study of interaction of porous silicon prepared by stain etching with rat hippocampal neurons (B50, immortalised line). Porous Si has been prepared by stain etching both from crystalline and polycrystalline substrates. Two types of patterns have been examined: (i) 100 microm square pads separated by 100 microm of untreated space and (ii) 30 microm and 100 microm stripes separated by 300 microm of untreated surface. In all cases cells show clear preference in adhesion to porous Si over untreated surface. We observe a much closer attachment of the cell to the surface of porous Si than has been anticipated before with the gap between a cell and porous surface of no more than 20 nm. This study demonstrates the influence of surface topology on proliferation of a neuron network, thus suggesting that a degree of control over cell growth pattern can be achieved using porous material alone. We show that the network pattern on porous Si is influenced by a single neuron response to the surface nature and topology.


Subject(s)
Hippocampus/cytology , Hippocampus/drug effects , Silicon Compounds/pharmacology , Animals , Cell Line , Growth Cones , Microscopy, Electron, Scanning , Porosity , Rats
SELECTION OF CITATIONS
SEARCH DETAIL
...