Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Front Plant Sci ; 14: 1065604, 2023.
Article in English | MEDLINE | ID: mdl-36890900

ABSTRACT

Introduction: Soybean is sensitive to light and temperature. Under the background of global asymmetric climate warming. Methods: The increase of night temperature may have an important impact on soybean yield. In this study, three varieties with different level of protein were planted under 18°C and 28°C night temperatures for investigating the effects of high night temperatures on soybean yield formation and the dynamic changes of non-structural carbohydrates (NSC) during the seed filling period (R5-R7). Results and discussion: The results indicated that high night temperatures resulted in smaller seed size, lower seed weight, and a reduced number of effective pods and seeds per plant, and thus, a significant reduction in yield per plant. Analysis of the seed composition variations showed carbohydrates were more substantially affected by high night temperature than protein and oil. We observed "carbon hunger" caused by high night temperature increased photosynthesis and sucrose accumulation in the leaves during the early stage of high night temperature treatment. With elongated treated time, the excessive carbon consumption led to the decrease of sucrose accumulation in soybean seeds. Transcriptome analysis of leaves after 7 days of treatment showed that the expression of most sucrose synthase and sucrose phosphatase genes decreased significantly under the high night temperature. Which could be another important reason for the decrease of sucrose. These findings provided a theoretical basis for enhancing the tolerance of soybean to high night temperature.

2.
Int J Mol Sci ; 23(17)2022 Sep 01.
Article in English | MEDLINE | ID: mdl-36077363

ABSTRACT

Pseudo-response regulator (PRR) family members serve as key components of the core clock of the circadian clock, and play important roles in photoperiodic flowering, stress tolerance, growth, and the development of plants. In this study, 14 soybean PRR genes were identified, and classified into three groups according to phylogenetic analysis and structural characteristics. Real-time quantitative PCR analysis revealed that 13 GmPRRs exhibited obvious rhythmic expression under long-day (LD) and short-day (SD) conditions, and the expression of 12 GmPRRs was higher under LD in leaves. To evaluate the effects of natural variations in GmPRR alleles on soybean adaptation, we examined the sequences of GmPRRs among 207 varieties collected across China and the US, investigated the flowering phenotypes in six environments, and analyzed the geographical distributions of the major haplotypes. The results showed that a majority of non-synonymous mutations in the coding region were associated with flowering time, and we found that the nonsense mutations resulting in deletion of the CCT domain were related to early flowering. Haplotype analysis demonstrated that the haplotypes associated with early flowering were mostly distributed in Northeast China, while the haplotypes associated with late flowering were mostly cultivated in the lower latitudes of China. Our study of PRR family genes in soybean provides not only an important guide for characterizing the circadian clock-controlled flowering pathway but also a theoretical basis and opportunities to breed varieties with adaptation to specific regions and farming systems.


Subject(s)
Gene Expression Regulation, Plant , Glycine max , Flowers , Genomics , Photoperiod , Phylogeny , Plant Breeding , Plant Proteins/metabolism , Glycine max/metabolism
3.
Front Plant Sci ; 13: 920522, 2022.
Article in English | MEDLINE | ID: mdl-35845709

ABSTRACT

Preserving viable pollen is of great interest to breeders to maintain desirable germplasm for future inbreeding. Ultra-low temperature preservation of pollen is an effective and safe way for long-term storage of plant germplasm resources. In this study, we improved methods for the preservation of soybean pollen at ultra-low temperature. Soybean flowers at the initially-open stage were collected at 6-10 a.m. during the fully-bloom stage of soybean plants and were dehydrated for 10 h and then frozen and stored at -196 or -80°C. In vitro culture experiments showed that the viability of preserved pollen remained as high as about 90%. The off-season (local site Heihe) and off-site (Beijing, after long-distance express delivery from Heihe) hybridization verification was conducted, and no significant difference in true hybrid rate was founded between the preserved pollen and the fresh pollen. The ultra-low temperature preservation technology for soybean pollen could break the spatiotemporal limit of soybean hybridization and facilitate the development of engineered soybean breeding.

4.
Front Plant Sci ; 13: 1101715, 2022.
Article in English | MEDLINE | ID: mdl-36684791

ABSTRACT

Soybean is an important model crop for photoperiodic response studies in plants and contributes significantly to the study of plant development and physiology in the past century. Because soybean plant is much bigger in size and longer in life cycle than Arabidopsis, it needs much more space for growth and time for investigation, which significantly hamper the efficiency of research. In the current study, we tested the photoperiodic response of a distinctive artificially-made cotyledon-only plant (COP) using a photoperiod-sensitive soybean variety Zigongdongdou (ZGDD) and other varieties with diverse sensitivity to photoperiod. ZGDD COPs flowered 39.4 ± 2.5 d after emergence under short-day conditions but maintained vegetative growth under long-day and night break conditions, which is similar to the case in the intact ZGDD plants. The COPs of early-maturing and medium-maturing soybean varieties also grew and flowered normally under natural day-length conditions. At the molecular level, the key genes in the photoperiodic pathway such as E1, GmFT1a, GmFT2a, and GmFT5a in the COPs also showed the same photoperiod sensitivity as in the intact plants. In addition, a simpler material of COP with only one cotyledon and root was generated and found to be sensitive to photoperiod as well. Notably, the COPs are only one-fifth the height of intact plants and one-third the maximum diameter of the intact plants grown in chambers 30 d after emergence. Based on COPs, we established a novel experimental system characterized by an entire photoperiodic response and longer longevity of cotyledons in addition to small plant size, ensuring the consistency, reliability, and stability of plant materials. COPs have the potential to be a novel model material for studies of the developmental biology of soybean and other dicots.

5.
Front Plant Sci ; 12: 717077, 2021.
Article in English | MEDLINE | ID: mdl-34484281

ABSTRACT

Speed breeding by artificial control of photothermal conditions facilitates generation advancement but was limited in scale and cost. In this study, we demonstrated a cost-saving off-site summer nursery pattern, taking full advantage of shorter daylength and higher temperature with lower latitude compared to the origin of the soybean cultivars used in the study. This substantially reduced the generation cycles under totally natural conditions. Using this approach, two generations of soybean cultivars from Northeastern Spring Planting Region (NE) and Yellow-Huai-Hai Valleys Summer Planting Region (YHH) were successfully obtained in Beijing and Hainan, respectively, compared to one generation in origin. Fresh-seeding method was also used to further shorten the generation duration by 7-10 days, thereby allowing at least four generations per year. Using DNA markers to define haplotypes of maturity genes E1-E4, we proposed a model to predict the optimum adaptation region of the advanced generation lines. Taken together, we present a speed-breeding methodology combining off-site nursery, fresh-seeding method, and marker-assisted selection, aimed at accelerating soybean improvement.

6.
BMC Genomics ; 22(1): 529, 2021 Jul 10.
Article in English | MEDLINE | ID: mdl-34246232

ABSTRACT

BACKGROUND: In soybean, some circadian clock genes have been identified as loci for maturity traits. However, the effects of these genes on soybean circadian rhythmicity and their impacts on maturity are unclear. RESULTS: We used two geographically, phenotypically and genetically distinct cultivars, conventional juvenile Zhonghuang 24 (with functional J/GmELF3a, a homolog of the circadian clock indispensable component EARLY FLOWERING 3) and long juvenile Huaxia 3 (with dysfunctional j/Gmelf3a) to dissect the soybean circadian clock with time-series transcriptomal RNA-Seq analysis of unifoliate leaves on a day scale. The results showed that several known circadian clock components, including RVE1, GI, LUX and TOC1, phase differently in soybean than in Arabidopsis, demonstrating that the soybean circadian clock is obviously different from the canonical model in Arabidopsis. In contrast to the observation that ELF3 dysfunction results in clock arrhythmia in Arabidopsis, the circadian clock is conserved in soybean regardless of the functional status of J/GmELF3a. Soybean exhibits a circadian rhythmicity in both gene expression and alternative splicing. Genes can be grouped into six clusters, C1-C6, with different expression profiles. Many more genes are grouped into the night clusters (C4-C6) than in the day cluster (C2), showing that night is essential for gene expression and regulation. Moreover, soybean chromosomes are activated with a circadian rhythmicity, indicating that high-order chromosome structure might impact circadian rhythmicity. Interestingly, night time points were clustered in one group, while day time points were separated into two groups, morning and afternoon, demonstrating that morning and afternoon are representative of different environments for soybean growth and development. However, no genes were consistently differentially expressed over different time-points, indicating that it is necessary to perform a circadian rhythmicity analysis to more thoroughly dissect the function of a gene. Moreover, the analysis of the circadian rhythmicity of the GmFT family showed that GmELF3a might phase- and amplitude-modulate the GmFT family to regulate the juvenility and maturity traits of soybean. CONCLUSIONS: These results and the resultant RNA-seq data should be helpful in understanding the soybean circadian clock and elucidating the connection between the circadian clock and soybean maturity.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Circadian Clocks , Arabidopsis Proteins/genetics , Circadian Clocks/genetics , Circadian Rhythm/genetics , Dissection , Gene Expression Regulation, Plant , Glycine max/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...