Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 141
Filter
1.
Comput Biol Med ; 178: 108689, 2024 Jun 06.
Article in English | MEDLINE | ID: mdl-38875907

ABSTRACT

Registering the head and estimating the scalp surface are important for various biomedical procedures, including those using neuronavigation to localize brain stimulation or recording. However, neuronavigation systems rely on manually-identified fiducial head targets and often require a patient-specific MRI for accurate registration, limiting adoption. We propose a practical technique capable of inferring the scalp shape and use it to accurately register the subject's head. Our method does not require anatomical landmark annotation or an individual MRI scan, yet achieves accurate registration of the subject's head and estimation of its surface. The scalp shape is estimated from surface samples easily acquired using existing pointer tools, and registration exploits statistical head model priors. Our method allows for the acquisition of non-trivial shapes from a limited number of data points while leveraging their object class priors, surpassing the accuracy of common reconstruction and registration methods using the same tools. The proposed approach is evaluated in a virtual study with head MRI data from 1152 subjects, achieving an average reconstruction root-mean-square error of 2.95 mm, which outperforms a common neuronavigation technique by 2.70 mm. We also characterize the error under different conditions and provide guidelines for efficient sampling. Furthermore, we demonstrate and validate the proposed method on data from 50 subjects collected with conventional neuronavigation tools and setup, obtaining an average root-mean-square error of 2.89 mm; adding landmark-based registration improves this error to 2.63 mm. The simulation and experimental results support the proposed method's effectiveness with or without landmark annotation, highlighting its broad applicability.

3.
PLoS One ; 19(1): e0291883, 2024.
Article in English | MEDLINE | ID: mdl-38215154

ABSTRACT

BACKGROUND: While early autism intervention can significantly improve outcomes, gaps in implementation exist globally. These gaps are clearest in Africa, where forty percent of the world's children will live by 2050. Task-sharing early intervention to non-specialists is a key implementation strategy, given the lack of specialists in Africa. Naturalistic Developmental Behavioral Interventions (NDBI) are a class of early autism intervention that can be delivered by caregivers. As a foundational step to address the early autism intervention gap, we adapted a non-specialist delivered caregiver coaching NDBI for the South African context, and pre-piloted this cascaded task-sharing approach in an existing system of care. OBJECTIVES: First, we will test the effectiveness of the caregiver coaching NDBI compared to usual care. Second, we will describe coaching implementation factors within the Western Cape Department of Education in South Africa. METHODS: This is a type 1 effectiveness-implementation hybrid design; assessor-blinded, group randomized controlled trial. Participants include 150 autistic children (18-72 months) and their caregivers who live in Cape Town, South Africa, and those involved in intervention implementation. Early Childhood Development practitioners, employed by the Department of Education, will deliver 12, one hour, coaching sessions to the intervention group. The control group will receive usual care. Distal co-primary outcomes include the Communication Domain Standard Score (Vineland Adaptive Behavior Scales, Third Edition) and the Language and Communication Developmental Quotient (Griffiths Scales of Child Development, Third Edition). Proximal secondary outcome include caregiver strategies measured by the sum of five items from the Joint Engagement Rating Inventory. We will describe key implementation determinants. RESULTS: Participant enrolment started in April 2023. Estimated primary completion date is March 2027. CONCLUSION: The ACACIA trial will determine whether a cascaded task-sharing intervention delivered in an educational setting leads to meaningful improvements in communication abilities of autistic children, and identify implementation barriers and facilitators. TRIAL REGISTRATION: NCT05551728 in Clinical Trial Registry (https://clinicaltrials.gov).


Subject(s)
Acacia , Autistic Disorder , Mentoring , Child , Child, Preschool , Humans , Autistic Disorder/therapy , Caregivers/education , Randomized Controlled Trials as Topic , South Africa , Infant
4.
Cerebellum ; 23(2): 459-470, 2024 Apr.
Article in English | MEDLINE | ID: mdl-37039956

ABSTRACT

Dysarthria is a common manifestation across cerebellar ataxias leading to impairments in communication, reduced social connections, and decreased quality of life. While dysarthria symptoms may be present in other neurological conditions, ataxic dysarthria is a perceptually distinct motor speech disorder, with the most prominent characteristics being articulation and prosody abnormalities along with distorted vowels. We hypothesized that uncertainty of vowel predictions by an automatic speech recognition system can capture speech changes present in cerebellar ataxia. Speech of participants with ataxia (N=61) and healthy controls (N=25) was recorded during the "picture description" task. Additionally, participants' dysarthric speech and ataxia severity were assessed on a Brief Ataxia Rating Scale (BARS). Eight participants with ataxia had speech and BARS data at two timepoints. A neural network trained for phoneme prediction was applied to speech recordings. Average entropy of vowel tokens predictions (AVE) was computed for each participant's recording, together with mean pitch and intensity standard deviations (MPSD and MISD) in the vowel segments. AVE and MISD demonstrated associations with BARS speech score (Spearman's rho=0.45 and 0.51), and AVE demonstrated associations with BARS total (rho=0.39). In the longitudinal cohort, Wilcoxon pairwise signed rank test demonstrated an increase in BARS total and AVE, while BARS speech and acoustic measures did not significantly increase. Relationship of AVE to both BARS speech and BARS total, as well as the ability to capture disease progression even in absence of measured speech decline, indicates the potential of AVE as a digital biomarker for cerebellar ataxia.


Subject(s)
Cerebellar Ataxia , Dysarthria , Humans , Dysarthria/etiology , Dysarthria/complications , Cerebellar Ataxia/diagnosis , Cerebellar Ataxia/complications , Uncertainty , Quality of Life , Ataxia/diagnosis , Ataxia/complications , Biomarkers
5.
Article in English | MEDLINE | ID: mdl-38155840

ABSTRACT

The localization and tracking of neurocranial landmarks is essential in modern medical procedures, e.g., transcranial magnetic stimulation (TMS). However, state-of-the-art treatments still rely on the manual identification of head targets and require setting retroreflective markers for tracking. This limits the applicability and scalability of TMS approaches, making them time-consuming, dependent on expensive hardware, and prone to errors when retroreflective markers drift from their initial position. To overcome these limitations, we propose a scalable method capable of inferring the position of points of interest on the scalp, e.g., the International 10-20 System's neurocranial landmarks. In contrast with existing approaches, our method does not require human intervention or markers; head landmarks are estimated leveraging visible facial landmarks, optional head size measurements, and statistical head model priors. We validate the proposed approach on ground truth data from 1,150 subjects, for which facial 3D and head information is available; our technique achieves a localization RMSE of 2.56 mm on average, which is of the same order as reported by high-end techniques in TMS. Our implementation is available at https://github.com/odedsc/ANLD.

6.
NPJ Digit Med ; 6(1): 207, 2023 Nov 15.
Article in English | MEDLINE | ID: mdl-37968567

ABSTRACT

Heart rate (HR) response to workout intensity reflects fitness and cardiorespiratory health. Physiological models have been developed to describe such heart rate dynamics and characterize cardiorespiratory fitness. However, these models have been limited to small studies in controlled lab environments and are challenging to apply to noisy-but ubiquitous-data from wearables. We propose a hybrid approach that combines a physiological model with flexible neural network components to learn a personalized, multidimensional representation of fitness. The physiological model describes the evolution of heart rate during exercise using ordinary differential equations (ODEs). ODE parameters are dynamically derived via a neural network connecting personalized representations to external environmental factors, from area topography to weather and instantaneous workout intensity. Our approach efficiently fits the hybrid model to a large set of 270,707 workouts collected from wearables of 7465 users from the Apple Heart and Movement Study. The resulting model produces fitness representations that accurately predict full HR response to exercise intensity in future workouts, with a per-workout median error of 6.1 BPM [4.4-8.8 IQR]. We further demonstrate that the learned representations correlate with traditional metrics of cardiorespiratory fitness, such as VO2 max (explained variance 0.81 ± 0.003). Lastly, we illustrate how our model is naturally interpretable and explicitly describes the effects of environmental factors such as temperature and humidity on heart rate, e.g., high temperatures can increase heart rate by 10%. Combining physiological ODEs with flexible neural networks can yield interpretable, robust, and expressive models for health applications.

7.
Nat Med ; 29(10): 2489-2497, 2023 10.
Article in English | MEDLINE | ID: mdl-37783967

ABSTRACT

Early detection of autism, a neurodevelopmental condition associated with challenges in social communication, ensures timely access to intervention. Autism screening questionnaires have been shown to have lower accuracy when used in real-world settings, such as primary care, as compared to research studies, particularly for children of color and girls. Here we report findings from a multiclinic, prospective study assessing the accuracy of an autism screening digital application (app) administered during a pediatric well-child visit to 475 (17-36 months old) children (269 boys and 206 girls), of which 49 were diagnosed with autism and 98 were diagnosed with developmental delay without autism. The app displayed stimuli that elicited behavioral signs of autism, quantified using computer vision and machine learning. An algorithm combining multiple digital phenotypes showed high diagnostic accuracy with the area under the receiver operating characteristic curve = 0.90, sensitivity = 87.8%, specificity = 80.8%, negative predictive value = 97.8% and positive predictive value = 40.6%. The algorithm had similar sensitivity performance across subgroups as defined by sex, race and ethnicity. These results demonstrate the potential for digital phenotyping to provide an objective, scalable approach to autism screening in real-world settings. Moreover, combining results from digital phenotyping and caregiver questionnaires may increase autism screening accuracy and help reduce disparities in access to diagnosis and intervention.


Subject(s)
Autism Spectrum Disorder , Autistic Disorder , Male , Female , Humans , Child , Infant , Child, Preschool , Autistic Disorder/diagnosis , Prospective Studies , ROC Curve , Predictive Value of Tests , Early Diagnosis , Autism Spectrum Disorder/diagnosis
8.
Sci Adv ; 9(38): eadi1752, 2023 09 22.
Article in English | MEDLINE | ID: mdl-37738345

ABSTRACT

Nudges are interventions promoting healthy behavior without forbidding options or substantial incentives; the Apple Watch, for example, encourages users to stand by delivering a notification if they have been sitting for the first 50 minutes of an hour. On the basis of 76 billion minutes of observational standing data from 160,000 subjects in the public Apple Heart and Movement Study, we estimate the causal effect of this notification using a regression discontinuity design for time series data with time-varying treatment. We show that the nudge increases the probability of standing by up to 43.9% and remains effective with time. The nudge's effectiveness increases with age and is independent of gender. Closing Apple Watch Activity Rings, a visualization of participants' daily progress in Move, Exercise, and Stand, further increases the nudge's impact. This work demonstrates the effectiveness of behavioral health interventions and introduces tools for investigating their causal effect from large-scale observations.


Subject(s)
Exercise , Heart , Humans , Movement , Probability , Time Factors
9.
medRxiv ; 2023 Sep 11.
Article in English | MEDLINE | ID: mdl-37745535

ABSTRACT

Background: While early autism intervention can significantly improve outcomes, gaps in implementation exist globally. These gaps are clearest in Africa, where forty percent of the world's children will live by 2050. Task-sharing early intervention to non-specialists is a key implementation strategy, given the lack of specialists in Africa. Naturalistic Developmental Behavioral Interventions (NDBI) are a class of early autism intervention that can be delivered by caregivers. As a foundational step to address the early autism intervention gap, we adapted a non-specialist delivered caregiver coaching NDBI for the South African context, and pre-piloted this cascaded task-sharing approach in an existing system of care. Objectives: First, we will test the effectiveness of the caregiver coaching NDBI compared to usual care. Second, we will describe coaching implementation factors within the Western Cape Department of Education in South Africa. Methods: This is a type 1 effectiveness-implementation hybrid design; assessor-blinded, group randomized controlled trial. Participants include 150 autistic children (18-72 months) and their caregivers who live in Cape Town, South Africa, and those involved in intervention implementation. Early Childhood Development practitioners, employed by the Department of Education, will deliver 12, one hour, coaching sessions to the intervention group. The control group will receive usual care. Distal co-primary outcomes include the Communication Domain Standard Score (Vineland Adaptive Behavior Scales, Third Edition) and the Language and Communication Developmental Quotient (Griffiths Scales of Child Development, Third Edition). Proximal secondary outcome include caregiver strategies measured by the sum of five items from the Joint Engagement Rating Inventory. We will describe key implementation determinants. Results: Participant enrolment started in April 2023. Estimated primary completion date is March 2027. Conclusion: The ACACIA trial will determine whether a cascaded task-sharing intervention delivered in an educational setting leads to meaningful improvements in communication abilities of autistic children, and identify implementation barriers and facilitators.

10.
Autism Res ; 16(7): 1360-1374, 2023 07.
Article in English | MEDLINE | ID: mdl-37259909

ABSTRACT

Early behavioral markers for autism include differences in social attention and orienting in response to one's name when called, and differences in body movements and motor abilities. More efficient, scalable, objective, and reliable measures of these behaviors could improve early screening for autism. This study evaluated whether objective and quantitative measures of autism-related behaviors elicited from an app (SenseToKnow) administered on a smartphone or tablet and measured via computer vision analysis (CVA) are correlated with standardized caregiver-report and clinician administered measures of autism-related behaviors and cognitive, language, and motor abilities. This is an essential step in establishing the concurrent validity of a digital phenotyping approach. In a sample of 485 toddlers, 43 of whom were diagnosed with autism, we found that CVA-based gaze variables related to social attention were associated with the level of autism-related behaviors. Two language-related behaviors measured via the app, attention to people during a conversation and responding to one's name being called, were associated with children's language skills. Finally, performance during a bubble popping game was associated with fine motor skills. These findings provide initial support for the concurrent validity of the SenseToKnow app and its potential utility in identifying clinical profiles associated with autism. Future research is needed to determine whether the app can be used as an autism screening tool, can reliably stratify autism-related behaviors, and measure changes in autism-related behaviors over time.


Subject(s)
Autism Spectrum Disorder , Autistic Disorder , Humans , Autistic Disorder/diagnosis , Autistic Disorder/psychology , Autism Spectrum Disorder/diagnosis , Cognition
11.
IEEE Trans Affect Comput ; 14(2): 919-930, 2023.
Article in English | MEDLINE | ID: mdl-37266390

ABSTRACT

Atypical facial expression is one of the early symptoms of autism spectrum disorder (ASD) characterized by reduced regularity and lack of coordination of facial movements. Automatic quantification of these behaviors can offer novel biomarkers for screening, diagnosis, and treatment monitoring of ASD. In this work, 40 toddlers with ASD and 396 typically developing toddlers were shown developmentally-appropriate and engaging movies presented on a smart tablet during a well-child pediatric visit. The movies consisted of social and non-social dynamic scenes designed to evoke certain behavioral and affective responses. The front-facing camera of the tablet was used to capture the toddlers' face. Facial landmarks' dynamics were then automatically computed using computer vision algorithms. Subsequently, the complexity of the landmarks' dynamics was estimated for the eyebrows and mouth regions using multiscale entropy. Compared to typically developing toddlers, toddlers with ASD showed higher complexity (i.e., less predictability) in these landmarks' dynamics. This complexity in facial dynamics contained novel information not captured by traditional facial affect analyses. These results suggest that computer vision analysis of facial landmark movements is a promising approach for detecting and quantifying early behavioral symptoms associated with ASD.

12.
J Biomed Inform ; 144: 104390, 2023 08.
Article in English | MEDLINE | ID: mdl-37182592

ABSTRACT

Recent work has shown that predictive models can be applied to structured electronic health record (EHR) data to stratify autism likelihood from an early age (<1 year). Integrating clinical narratives (or notes) with structured data has been shown to improve prediction performance in other clinical applications, but the added predictive value of this information in early autism prediction has not yet been explored. In this study, we aimed to enhance the performance of early autism prediction by using both structured EHR data and clinical narratives. We built models based on structured data and clinical narratives separately, and then an ensemble model that integrated both sources of data. We assessed the predictive value of these models from Duke University Health System over a 14-year span to evaluate ensemble models predicting later autism diagnosis (by age 4 years) from data collected from ages 30 to 360 days. Our sample included 11,750 children above by age 3 years (385 meeting autism diagnostic criteria). The ensemble model for autism prediction showed superior performance and at age 30 days achieved 46.8% sensitivity (95% confidence interval, CI: 22.0%, 52.9%), 28.0% positive predictive value (PPV) at high (90%) specificity (CI: 2.0%, 33.1%), and AUC4 (with at least 4-year follow-up for controls) reaching 0.769 (CI: 0.715, 0.811). Prediction by 360 days achieved 44.5% sensitivity (CI: 23.6%, 62.9%), and 13.7% PPV at high (90%) specificity (CI: 9.6%, 18.9%), and AUC4 reaching 0.797 (CI: 0.746, 0.840). Results show that incorporating clinical narratives in early autism prediction achieved promising accuracy by age 30 days, outperforming models based on structured data only. Furthermore, findings suggest that additional features learned from clinician narratives might be hypothesis generating for understanding early development in autism.


Subject(s)
Autistic Disorder , Electronic Health Records , Child , Humans , Infant , Child, Preschool , Autistic Disorder/diagnosis , Predictive Value of Tests , Narration , Electronics
13.
Sci Rep ; 13(1): 7158, 2023 05 03.
Article in English | MEDLINE | ID: mdl-37137954

ABSTRACT

Differences in social attention are well-documented in autistic individuals, representing one of the earliest signs of autism. Spontaneous blink rate has been used to index attentional engagement, with lower blink rates reflecting increased engagement. We evaluated novel methods using computer vision analysis (CVA) for automatically quantifying patterns of attentional engagement in young autistic children, based on facial orientation and blink rate, which were captured via mobile devices. Participants were 474 children (17-36 months old), 43 of whom were diagnosed with autism. Movies containing social or nonsocial content were presented via an iPad app, and simultaneously, the device's camera recorded the children's behavior while they watched the movies. CVA was used to extract the duration of time the child oriented towards the screen and their blink rate as indices of attentional engagement. Overall, autistic children spent less time facing the screen and had a higher mean blink rate compared to neurotypical children. Neurotypical children faced the screen more often and blinked at a lower rate during the social movies compared to the nonsocial movies. In contrast, autistic children faced the screen less often during social movies than during nonsocial movies and showed no differential blink rate to social versus nonsocial movies.


Subject(s)
Attentional Blink , Autistic Disorder , Humans , Child, Preschool , Infant , Attention , Vision, Ocular
14.
J Autism Dev Disord ; 2023 Apr 27.
Article in English | MEDLINE | ID: mdl-37103659

ABSTRACT

We report preliminary results of computer vision analysis of caregiver-child interactions during free play with children diagnosed with autism (N = 29, 41-91 months), attention-deficit/hyperactivity disorder (ADHD, N = 22, 48-100 months), or combined autism + ADHD (N = 20, 56-98 months), and neurotypical children (NT, N = 7, 55-95 months). We conducted micro-analytic analysis of 'reaching to a toy,' as a proxy for initiating or responding to a toy play bout. Dyadic analysis revealed two clusters of interaction patterns, which differed in frequency of 'reaching to a toy' and caregivers' contingent responding to the child's reach for a toy by also reaching for a toy. Children in dyads with higher caregiver responsiveness had less developed language, communication, and socialization skills. Clusters were not associated with diagnostic groups. These results hold promise for automated methods of characterizing caregiver responsiveness in dyadic interactions for assessment and outcome monitoring in clinical trials.

15.
JAMA Netw Open ; 6(2): e2254303, 2023 02 01.
Article in English | MEDLINE | ID: mdl-36729455

ABSTRACT

Importance: Autism detection early in childhood is critical to ensure that autistic children and their families have access to early behavioral support. Early correlates of autism documented in electronic health records (EHRs) during routine care could allow passive, predictive model-based monitoring to improve the accuracy of early detection. Objective: To quantify the predictive value of early autism detection models based on EHR data collected before age 1 year. Design, Setting, and Participants: This retrospective diagnostic study used EHR data from children seen within the Duke University Health System before age 30 days between January 2006 and December 2020. These data were used to train and evaluate L2-regularized Cox proportional hazards models predicting later autism diagnosis based on data collected from birth up to the time of prediction (ages 30-360 days). Statistical analyses were performed between August 1, 2020, and April 1, 2022. Main Outcomes and Measures: Prediction performance was quantified in terms of sensitivity, specificity, and positive predictive value (PPV) at clinically relevant model operating thresholds. Results: Data from 45 080 children, including 924 (1.5%) meeting autism criteria, were included in this study. Model-based autism detection at age 30 days achieved 45.5% sensitivity and 23.0% PPV at 90.0% specificity. Detection by age 360 days achieved 59.8% sensitivity and 17.6% PPV at 81.5% specificity and 38.8% sensitivity and 31.0% PPV at 94.3% specificity. Conclusions and Relevance: In this diagnostic study of an autism screening test, EHR-based autism detection achieved clinically meaningful accuracy by age 30 days, improving by age 1 year. This automated approach could be integrated with caregiver surveys to improve the accuracy of early autism screening.


Subject(s)
Autistic Disorder , Child , Humans , Adult , Infant , Autistic Disorder/diagnosis , Autistic Disorder/epidemiology , Electronic Health Records , Retrospective Studies , Predictive Value of Tests , Surveys and Questionnaires
16.
NPJ Digit Med ; 6(1): 17, 2023 Feb 03.
Article in English | MEDLINE | ID: mdl-36737475

ABSTRACT

Increasing evidence suggests that early motor impairments are a common feature of autism. Thus, scalable, quantitative methods for measuring motor behavior in young autistic children are needed. This work presents an engaging and scalable assessment of visual-motor abilities based on a bubble-popping game administered on a tablet. Participants are 233 children ranging from 1.5 to 10 years of age (147 neurotypical children and 86 children diagnosed with autism spectrum disorder [autistic], of which 32 are also diagnosed with co-occurring attention-deficit/hyperactivity disorder [autistic+ADHD]). Computer vision analyses are used to extract several game-based touch features, which are compared across autistic, autistic+ADHD, and neurotypical participants. Results show that younger (1.5-3 years) autistic children pop the bubbles at a lower rate, and their ability to touch the bubble's center is less accurate compared to neurotypical children. When they pop a bubble, their finger lingers for a longer period, and they show more variability in their performance. In older children (3-10-years), consistent with previous research, the presence of co-occurring ADHD is associated with greater motor impairment, reflected in lower accuracy and more variable performance. Several motor features are correlated with standardized assessments of fine motor and cognitive abilities, as evaluated by an independent clinical assessment. These results highlight the potential of touch-based games as an efficient and scalable approach for assessing children's visual-motor skills, which can be part of a broader screening tool for identifying early signs associated with autism.

17.
Med Image Anal ; 83: 102638, 2023 01.
Article in English | MEDLINE | ID: mdl-36257133

ABSTRACT

We present a method for suppressing motion artifacts in anatomical magnetic resonance acquisitions. Our proposed technique, termed MOTOR-MRI, can recover and salvage images which are otherwise heavily corrupted by motion induced artifacts and blur which renders them unusable. Contrary to other techniques, MOTOR-MRI operates on the reconstructed images and not on k-space data. It relies on breaking the standard acquisition protocol into several shorter ones (while maintaining the same total acquisition time) and subsequent efficient aggregation in Fourier space of locally sharp and consistent information among them, producing a sharp and motion mitigated image. We demonstrate the efficacy of the technique on T2-weighted turbo spin echo magnetic resonance brain scans with severe motion corruption from both 3 T and 7 T scanners and show significant qualitative and quantitative improvement in image quality. MOTOR-MRI can operate independently, or in conjunction with additional motion correction methods.


Subject(s)
Magnetic Resonance Imaging , Humans
18.
J Child Psychol Psychiatry ; 64(1): 156-166, 2023 01.
Article in English | MEDLINE | ID: mdl-35965431

ABSTRACT

BACKGROUND: Early differences in sensorimotor functioning have been documented in young autistic children and infants who are later diagnosed with autism. Previous research has demonstrated that autistic toddlers exhibit more frequent head movement when viewing dynamic audiovisual stimuli, compared to neurotypical toddlers. To further explore this behavioral characteristic, in this study, computer vision (CV) analysis was used to measure several aspects of head movement dynamics of autistic and neurotypical toddlers while they watched a set of brief movies with social and nonsocial content presented on a tablet. METHODS: Data were collected from 457 toddlers, 17-36 months old, during their well-child visit to four pediatric primary care clinics. Forty-one toddlers were subsequently diagnosed with autism. An application (app) displayed several brief movies on a tablet, and the toddlers watched these movies while sitting on their caregiver's lap. The front-facing camera in the tablet recorded the toddlers' behavioral responses. CV was used to measure the participants' head movement rate, movement acceleration, and complexity using multiscale entropy. RESULTS: Autistic toddlers exhibited significantly higher rate, acceleration, and complexity in their head movements while watching the movies compared to neurotypical toddlers, regardless of the type of movie content (social vs. nonsocial). The combined features of head movement acceleration and complexity reliably distinguished the autistic and neurotypical toddlers. CONCLUSIONS: Autistic toddlers exhibit differences in their head movement dynamics when viewing audiovisual stimuli. Higher complexity of their head movements suggests that their movements were less predictable and less stable compared to neurotypical toddlers. CV offers a scalable means of detecting subtle differences in head movement dynamics, which may be helpful in identifying early behaviors associated with autism and providing insight into the nature of sensorimotor differences associated with autism.


Subject(s)
Autism Spectrum Disorder , Autistic Disorder , Infant , Child, Preschool , Humans , Child , Autistic Disorder/diagnosis , Head Movements , Systems Analysis , Autism Spectrum Disorder/diagnosis
19.
Front Psychiatry ; 13: 1026279, 2022.
Article in English | MEDLINE | ID: mdl-36353577

ABSTRACT

Diffusion tensor imaging (DTI) has been used as an outcome measure in clinical trials for several psychiatric disorders but has rarely been explored in autism clinical trials. This is despite a large body of research suggesting altered white matter structure in autistic individuals. The current study is a secondary analysis of changes in white matter connectivity from a double-blind placebo-control trial of a single intravenous cord blood infusion in 2-7-year-old autistic children (1). Both clinical assessments and DTI were collected at baseline and 6 months after infusion. This study used two measures of white matter connectivity: change in node-to-node connectivity as measured through DTI streamlines and a novel measure of feedback network connectivity, Ollivier-Ricci curvature (ORC). ORC is a network measure which considers both local and global connectivity to assess the robustness of any given pathway. Using both the streamline and ORC analyses, we found reorganization of white matter pathways in predominantly frontal and temporal brain networks in autistic children who received umbilical cord blood treatment versus those who received a placebo. By looking at changes in network robustness, this study examined not only the direct, physical changes in connectivity, but changes with respect to the whole brain network. Together, these results suggest the use of DTI and ORC should be further explored as a potential biomarker in future autism clinical trials. These results, however, should not be interpreted as evidence for the efficacy of cord blood for improving clinical outcomes in autism. This paper presents a secondary analysis using data from a clinical trial that was prospectively registered with ClinicalTrials.gov(NCT02847182).

20.
IEEE Access ; 10: 34022-34031, 2022.
Article in English | MEDLINE | ID: mdl-36339795

ABSTRACT

Eye movement assessments have the potential to help in diagnosis and tracking of neurological disorders. Cerebellar ataxias cause profound and characteristic abnormalities in smooth pursuit, saccades, and fixation. Oculomotor dysmetria (i.e., hypermetric and hypometric saccades) is a common finding in individuals with cerebellar ataxia. In this study, we evaluated a scalable approach for detecting and quantifying oculomotor dysmetria. Eye movement data were extracted from iPhone video recordings of the horizontal saccade task (a standard clinical task in ataxia) and combined with signal processing and machine learning approaches to quantify saccade abnormalities. Entropy-based measures of eye movements during saccades were significantly different in 72 individuals with ataxia with dysmetria compared with 80 ataxia and Parkinson's participants without dysmetria. A template matching-based analysis demonstrated that saccadic eye movements in patients without dysmetria were more similar to the ideal template of saccades. A support vector machine was then used to train and test the ability of multiple signal processing features in combination to distinguish individuals with and without oculomotor dysmetria. The model achieved 78% accuracy (sensitivity= 80% and specificity= 76%). These results show that the combination of signal processing and machine learning approaches applied to iPhone video of saccades, allow for extraction of information pertaining to oculomotor dysmetria in ataxia. Overall, this inexpensive and scalable approach for capturing important oculomotor information may be a useful component of a screening tool for ataxia and could allow frequent at-home assessments of oculomotor function in natural history studies and clinical trials.

SELECTION OF CITATIONS
SEARCH DETAIL
...