Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Environ Sci Pollut Res Int ; 24(18): 15528-15537, 2017 Jun.
Article in English | MEDLINE | ID: mdl-28516351

ABSTRACT

The aim of the study was to characterise the multi-elemental composition and associations between a group of 32 elements and 16 rare earth elements collected by mycelium from growing substrates and accumulated in fruiting bodies of Macrolepiota procera from 16 sites from the lowland areas of Poland. The elements were quantified by inductively coupled plasma quadrupole mass spectrometry using validated method. The correlation matrix obtained from a possible 48 × 16 data matrix has been used to examine if any association exits between 48 elements in mushrooms foraged from 16 sampling localizations by multivariate approach using principal component (PC) analysis. The model could explain up to 93% variability by eight factors for which an eigenvalue value was ≥1. Absolute values of the correlation coefficient were above 0.72 (significance at p < 0.05) for 43 elements. From a point of view by consumer, the absolute content of Cd, Hg, Pb in caps of M. procera collected from background (unpolluted) areas could be considered elevated while sporadic/occasional ingestion of this mushroom is considered safe. The multivariate functional analysis revealed on associated accumulation of many elements in this mushroom. M. procera seem to possess some features of a bio-indicative species for anthropogenic Pb but also for some geogenic metals.


Subject(s)
Dental Porcelain/chemistry , Metal Ceramic Alloys/chemistry , Metalloids/chemistry , Metals, Heavy/chemistry , Titanium/chemistry , Agaricales , Environmental Monitoring , Food Contamination , Poland
2.
Food Chem ; 221: 24-28, 2017 Apr 15.
Article in English | MEDLINE | ID: mdl-27979199

ABSTRACT

This study aimed to investigate occurrence and distribution of 16 rare earth elements (REEs) in edible saprobic mushroom Macrolepiota procera, and to estimate possible intake and risk to human consumer. Mushrooms samples were collected from sixteen geographically diverse sites in the northern regions of Poland. The results showed that for Ce as the most abundant among the RREs in edible caps, the mean concentration was at 0.18±0.29mgkg-1dry biomass. The mean concentration for Σ16 REEs determined in caps of fungus was 0.50mgkg-1dry biomass and in whole fruiting bodies was 0.75mgkg-1dry biomass. From a point of view by consumer, the amounts of REEs contained in edible caps of M. procera could be considered small. Hence, eating a tasty caps of this fungus would not result in a health risk for consumer because of exposure to the REEs.


Subject(s)
Agaricales/chemistry , Food Contamination/analysis , Metals, Rare Earth/analysis , Poland
3.
Sci Rep ; 3: 3322, 2013 Nov 25.
Article in English | MEDLINE | ID: mdl-24270081

ABSTRACT

The influence of topography on the biogeochemical cycle of mercury (Hg) has received relatively little attention. Here, we report the measurement of Hg species and their corresponding isotope composition in soil sampled along an elevational gradient transect on Mt. Leigong in subtropical southwestern China. The data are used to explain orography-related effects on the fate and behaviour of Hg species in montane environments. The total- and methyl-Hg concentrations in topsoil samples show a positive correlation with elevation. However, a negative elevation dependence was observed in the mass-dependent fractionation (MDF) and mass-independent fractionation (MIF) signatures of Hg isotopes. Both a MIF (Δ(199)Hg) binary mixing approach and the traditional inert element method indicate that the content of Hg derived from the atmosphere distinctly increases with altitude.

4.
Environ Sci Technol ; 46(18): 10040-6, 2012 Sep 18.
Article in English | MEDLINE | ID: mdl-22916794

ABSTRACT

A great number of studies have confirmed that mercury-selenium (Hg-Se) antagonism is a widespread phenomenon in microorganisms, fish, poultry, humans, and other mammals. However, by comparison, little attention has been paid to plants. To investigate the influence of Se on the uptake and translocation of methylHg/inorganic Hg (MeHg/IHg) in the rice-soil system, we determined the levels of Se, IHg, and MeHg in different parts of rice plants (including the root, stem, leaf, husk, and grain (brown rice)) and corresponding soils of root zones collected from a Hg mined area, where Hg and Se co-occur due to historic Hg mining and retorting activities. The results showed that, in general, the Se levels were inversely related to the levels of both IHg and MeHg in the grains. In addition, a consistent reduction in translocation of both IHg and MeHg in the aerial shoots (i.e., the stem, leaf, husk, and grain) with increasing Se levels in the soils was observed. Furthermore, the Se levels were positively correlated with the IHg levels in the soils and the roots. These results suggest that Se may play an important role in limiting the bioaccessibility, absorption, and translocation/bioaccumulation of both IHg and MeHg in the aerial rice plant, which may be related to the formation of an Hg-Se insoluble complex in the rhizospheres and/or roots.


Subject(s)
Mercury/metabolism , Methylmercury Compounds/metabolism , Oryza/metabolism , Selenium/metabolism , Soil Pollutants/metabolism , Environmental Monitoring , Mercury/analysis , Methylmercury Compounds/analysis , Plant Structures/metabolism , Selenium/analysis , Soil/analysis , Soil Pollutants/analysis
5.
J Environ Monit ; 6(5): 481-92, 2004 May.
Article in English | MEDLINE | ID: mdl-15152318

ABSTRACT

For detailed reconstructions of atmospheric metal deposition using peat cores from bogs, a comprehensive protocol for working with peat cores is proposed. The first step is to locate and determine suitable sampling sites in accordance with the principal goal of the study, the period of time of interest and the precision required. Using the state of the art procedures and field equipment, peat cores are collected in such a way as to provide high quality records for paleoenvironmental study. Pertinent field observations gathered during the fieldwork are recorded in a field report. Cores are kept frozen at -18 degree C until they can be prepared in the laboratory. Frozen peat cores are precisely cut into 1 cm slices using a stainless steel band saw with stainless steel blades. The outside edges of each slice are removed using a titanium knife to avoid any possible contamination which might have occurred during the sampling and handling stage. Each slice is split, with one-half kept frozen for future studies (archived), and the other half further subdivided for physical, chemical, and mineralogical analyses. Physical parameters such as ash and water contents, the bulk density and the degree of decomposition of the peat are determined using established methods. A subsample is dried overnight at 105 degree C in a drying oven and milled in a centrifugal mill with titanium sieve. Prior to any expensive and time consuming chemical procedures and analyses, the resulting powdered samples, after manual homogenisation, are measured for more than twenty-two major and trace elements using non-destructive X-Ray fluorescence (XRF) methods. This approach provides lots of valuable geochemical data which documents the natural geochemical processes which occur in the peat profiles and their possible effect on the trace metal profiles. The development, evaluation and use of peat cores from bogs as archives of high-resolution records of atmospheric deposition of mineral dust and trace elements have led to the development of many analytical procedures which now permit the measurement of a wide range of elements in peat samples such as lead and lead isotope ratios, mercury, arsenic, antimony, silver, molybdenum, thorium, uranium, rare earth elements. Radiometric methods (the carbon bomb pulse of (14)C, (210)Pb and conventional (14)C dating) are combined to allow reliable age-depth models to be reconstructed for each peat profile.


Subject(s)
Environmental Monitoring/methods , Geologic Sediments/chemistry , Isotopes/analysis , Minerals/analysis , Soil Pollutants/analysis , Radiometry , Soil/analysis , Spectrometry, X-Ray Emission , Trace Elements/analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...