Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
Redox Biol ; 44: 102009, 2021 08.
Article in English | MEDLINE | ID: mdl-34044323

ABSTRACT

Triggering factors of Acute Chest Syndrome (ACS) is a leading cause of death in patients with Sickle Cell Disease (SCD) and targeted therapies are limited. Chlorine (Cl2) inhalation happens frequently, but its role as a potential trigger of ACS has not been determined. In this study, we hypothesized that Cl2 exposure resembling that in the vicinity of industrial accidents induces acute hemolysis with acute lung injury, reminiscent of ACS in humanized SCD mice. When exposed to Cl2 (500 ppm for 30 min), 64% of SCD mice succumbed within 6 h while none of the control mice expressing normal human hemoglobin died (p<0.01). Surviving SCD mice had evidence of acute hemolysis, respiratory acidosis, acute lung injury, and high concentrations of chlorinated palmitic and stearic acids (p<0.05) in their plasmas and RBCs compared to controls. Treatment with a single intraperitoneal dose of human hemopexin 30 min after Cl2 inhalation reduced mortality to around 15% (p<0.01) with reduced hemolysis (decreased RBCs fragility (p<0.001) and returned plasma heme to normal levels (p<0.0001)), improved oxygenation (p<0.0001) and reduced acute lung injury scores (p<0.0001). RBCs from SCD mice had significant levels of carbonylation (which predisposes RBCs to hemolysis) 6 h post-Cl2 exposure which were absent in RBCs of mice treated with hemopexin. To understand the mechanisms leading to carbonylation, we incubated RBCs from SCD mice with chlorinated lipids and identified sickling and increased hemolysis compared to RBCs obtained from control mice and treated similarly. Our study indicates that Cl2 inhalation induces ACS in SCD mice via induction of acute hemolysis, and that post exposure administration of hemopexin reduces mortality and lung injury. Our data suggest that SCD patients are vulnerable in Cl2 exposure incidents and that hemopexin is a potential therapeutic agent.


Subject(s)
Acute Chest Syndrome , Anemia, Sickle Cell , Animals , Chlorine , Hemolysis , Hemopexin , Humans , Mice
2.
J Trace Elem Med Biol ; 60: 126483, 2020 Jul.
Article in English | MEDLINE | ID: mdl-32155573

ABSTRACT

Cigarette smoke exposure is a major cause of chronic obstructive pulmonary disease. Cadmium is a leading toxic component of cigarette smoke. Cadmium and zinc are highly related metals. Whereas, zinc is an essential metal required for normal health, cadmium is highly toxic. Zrt- and Irt-like protein 8 (ZIP8) is an avid transporter of both zinc and cadmium into cells and is abundantly expressed in the lung of smokers compared to nonsmokers. Our objective was to determine whether disturbed zinc homeostasis through diet or the zinc transporter ZIP8 increase susceptibility to lung damage following prolonged cigarette smoke exposure. METHODS: Cigarette smoke exposure was evaluated in the lungs of mice subject to insufficient and sufficient zinc intakes, in transgenic ZIP8 overexpressing mice, and a novel myeloid-specific ZIP8 knockout strain. RESULTS: Moderate depletion of zinc intakes in adult mice resulted in a significant increase in lung cadmium burden and permanent lung tissue loss following prolonged smoke exposure. Overexpression of ZIP8 resulted in increased lung cadmium burden and more extensive lung damage, whereas cigarette smoke exposure in ZIP8 knockout mice resulted in increased lung tissue loss without a change in lung cadmium content, but a decrease in zinc. CONCLUSIONS: Overall, findings were consistent with past human studies. Imbalance in Zn homeostasis increases susceptibility to permanent lung injury following prolonged cigarette smoke exposure. Based on animal studies, both increased and decreased ZIP8 expression enhanced irreversible tissue damage in response to prolonged tobacco smoke exposure. We believe these findings represent an important advancement in our understanding of how imbalance in zinc homeostasis and cadmium exposure via tobacco smoke may increase susceptibility to smoking-induced lung disease.


Subject(s)
Homeostasis , Lung/metabolism , Pulmonary Disease, Chronic Obstructive/metabolism , Smoking/adverse effects , Tobacco Products/adverse effects , Zinc/metabolism , Animals , Cation Transport Proteins/genetics , Cation Transport Proteins/metabolism , Diet , Disease Models, Animal , Lung/pathology , Male , Mice , Mice, Inbred C57BL , Pulmonary Disease, Chronic Obstructive/pathology , Zinc/administration & dosage , Zinc/deficiency
3.
J Nutr Biochem ; 70: 56-64, 2019 08.
Article in English | MEDLINE | ID: mdl-31153019

ABSTRACT

Organic dust exposure particularly within hog confinement facilities is a significant cause of airway inflammation and lung disease. In a cohort of Midwestern veterans with COPD and agricultural work exposure we observed reduced zinc intakes which were associated with decreased lung function. Because insufficient zinc intake is common within the U.S. and a potent modulator of innate immune function, we sought to determine whether deficits in zinc intake would impact the airway inflammatory response to hog confinement facility dust extract (HDE). Adult male C57BL/6 mice were randomized to zinc deficient or matched zinc sufficient diets for 3 weeks and subsequently treated with intranasal HDE inhalation or saline once or daily for 3 weeks while maintained on specific diets. Lavage fluid and lung tissue was collected. Conditions of zinc deficiency were also studied in macrophages exposed to HDE. Single and repetitive HDE inhalation exposure resulted in increased influx of total cells and neutrophils, increased mediator hyper-responsiveness (TNFα, IL-6, CXCL1, and amphiregulin), and enhanced tissue pathology that was more pronounced in zinc deficient mice compared to normal dietary counterparts. Airway inflammation was most pronounced in zinc deficient mice treated with repetitive HDE for 3 weeks. Similarly, macrophages maintained in a zinc deficient environment exhibited increased CXCL1 and IL-23 production as a result of increased NF-κB activation. Conclusion: Given the relatively high incidence of dietary deficiencies in agriculture workers, we anticipate that zinc intake, or a lack thereof, may play an important role in modulating the host response to organic dust exposure.


Subject(s)
Dust , Inflammation/drug therapy , Lung/drug effects , Pneumonia/chemically induced , Zinc/deficiency , Aged , Agriculture , Amphiregulin/metabolism , Animals , Bronchoalveolar Lavage Fluid , Chemokine CXCL1/metabolism , Cross-Sectional Studies , Farmers , Female , Humans , Inhalation Exposure/adverse effects , Interleukin-23/metabolism , Interleukin-6/metabolism , Macrophages/metabolism , Male , Mice , Mice, Inbred C57BL , Middle Aged , NF-kappa B p50 Subunit/metabolism , Neutrophils/metabolism , Occupational Exposure/adverse effects , Surveys and Questionnaires , Swine , Tumor Necrosis Factor-alpha/metabolism , United States
4.
J Immunol Res ; 2018: 4315140, 2018.
Article in English | MEDLINE | ID: mdl-30417019

ABSTRACT

Zinc is an essential micronutrient known to play a vital role in host defense against pathogens. Diets that are deficient in zinc lead to impaired immunity and delayed recovery from and worse outcomes following infection. Sustained insufficient zinc intake leads to dysregulation of the innate immune response and increases susceptibility to infection whereas zinc supplementation in at-risk populations has been shown to restore host defense and reduce pathogen-related morbidity and mortality. Upon infection, zinc deficiency leads to increased pathology due to imbalance in key signaling networks that result in excessive inflammation and collateral tissue damage. In particular, zinc impacts macrophage function, a critical front-line cell in host defense, in addition to other immune cells. Deficits in zinc adversely impact macrophage function resulting in dysregulation of phagocytosis, intracellular killing, and cytokine production. An additional work in this field has revealed a vital role for several zinc transporter proteins that are required for proper bioredistribution of zinc within mononuclear cells to achieve an optimal immune response against invading microorganisms. In this review, we will discuss the most recent developments regarding zinc's role in innate immunity and protection against pathogen invasion.


Subject(s)
Carrier Proteins/immunology , Infections/immunology , Inflammation/immunology , Myeloid Cells/immunology , Zinc/immunology , Animals , Host-Pathogen Interactions , Humans , Immunity, Innate , Ion Transport , Phagocytosis , Signal Transduction
5.
Alcohol Clin Exp Res ; 41(12): 2093-2099, 2017 Dec.
Article in English | MEDLINE | ID: mdl-28941289

ABSTRACT

BACKGROUND: Malondialdehyde (MDA) and acetaldehyde (AA) exist following ethanol metabolism and tobacco pyrolysis. As such, lungs of individuals with alcohol use disorders (AUDs) are a target for the effects of combined alcohol and cigarette smoke metabolites. MDA and AA form a stable protein adduct, malondialdehyde-acetaldehyde (MAA) adduct, known to be immunogenic, profibrotic, and proinflammatory. MAA adduct is the dominant epitope in anti-MAA antibody formation. We hypothesized that MAA-adducted protein forms in lungs of those who both abuse alcohol and smoke cigarettes, and that this would be associated with systemically elevated anti-MAA antibodies. METHODS: Four groups were established: AUD subjects who smoked cigarettes (+AUD/+smoke), smokers without AUD (-AUD/+smoke), AUD without smoke (+AUD/-smoke), and non-AUD/nonsmokers (-AUD/-smoke). RESULTS: We observed a significant increase in MAA adducts in lung cells of +AUD/+smoke versus -AUD/-smoke. No significant increase in MAA adducts was observed in -AUD/+smoke or in +AUD/-smoke compared to -AUD/-smoke. Serum from +AUD/+smoke had significantly increased levels of circulating anti-MAA IgA antibodies. After 1 week of alcohol that MAA-adducted protein is formed in the lungs of those who smoke cigarettes and abuse alcohol, leading to a subsequent increase in serum IgA antibodies. CONCLUSIONS: MAA-adducted proteins could play a role in pneumonia and other diseases of the lung in the setting of AUD and smoking.


Subject(s)
Acetaldehyde/metabolism , Alcoholism/metabolism , Autoantibodies/blood , Lung/metabolism , Malondialdehyde/metabolism , Proteins/metabolism , Smokers , Smoking/metabolism , Acetaldehyde/chemistry , Adult , Alcoholism/complications , Female , Humans , Male , Malondialdehyde/chemistry , Protein Binding , Proteins/chemistry , Young Adult
6.
Respir Res ; 18(1): 36, 2017 02 13.
Article in English | MEDLINE | ID: mdl-28193223

ABSTRACT

BACKGROUND: Co-exposure to cigarette smoke and alcohol leads to the generation of high concentrations of acetaldehyde and malondialdehyde in the lung. These aldehydes being highly electrophilic in nature react with biologically relevant proteins such as surfactant protein D (SPD) through a Schiff base reaction to generate SPD adducted malondialdehyde-acetaldehyde adduct (SPD-MAA) in mouse lung. SPD-MAA results in an increase in lung pro-inflammatory chemokine, keratinocyte chemoattractant (KC), and the recruitment of lung lavage neutrophils. Previous in vitro studies in bronchial epithelial cells and macrophages show that scavenger receptor A (SR-A1/CD204) is a major receptor for SPD-MAA. No studies have yet examined the in vivo role of SR-A1 in MAA-mediated lung inflammation. Therefore, we hypothesize that in the absence of SR-A1, MAA-induced inflammation in the lung is reduced or diminished. METHODS: To test this hypothesis, C57BL/6 WT and SR-A1 KO mice were nasally instilled with 50 µg/mL of SPD-MAA for 3 weeks (wks). After 3 weeks, bronchoalveolar lavage (BAL) fluid was collected and assayed for a total cell count, a differential cell count and CXCL1 (KC) chemokine. Lung tissue sections were stained with hematoxylin and eosin (H&E) and antibodies to MAA adduct. RESULTS: Results showed that BAL cellularity and influx of neutrophils were decreased in SR-A1 KO mice as compared to WT following repetitive SPD-MAA exposure. MAA adduct staining in the lung epithelium was decreased in SR-A1 KO mice. In comparison to WT, no increase in CXCL1 was observed in BAL fluid from SR-A1 KO mice over time. CONCLUSIONS: Overall, the data demonstrate that SR-A1/CD204 plays an important role in SPD-MAA induced inflammation in lung.


Subject(s)
Acetaldehyde/poisoning , Inflammation Mediators/immunology , Malondialdehyde/poisoning , Pneumonia/chemically induced , Pneumonia/immunology , Pulmonary Surfactant-Associated Protein D/poisoning , Scavenger Receptors, Class A/immunology , Animals , Mice , Mice, Inbred C57BL , Mice, Knockout , Scavenger Receptors, Class A/genetics
7.
Alcohol Clin Exp Res ; 40(12): 2563-2572, 2016 12.
Article in English | MEDLINE | ID: mdl-27783409

ABSTRACT

BACKGROUND: Reactive aldehydes such as acetaldehyde and malondialdehyde generated as a result of alcohol metabolism and cigarette smoke exposure lead to the formation of malondialdehyde-acetaldehyde-adducted proteins (MAA adducts). These aldehydes can adduct to different proteins such as bovine serum albumin and surfactant protein A or surfactant protein D (SPD). Macrophages play an important role in innate immunity, but the effect of MAA adducts on macrophage function has not yet been examined. Because macrophage scavenger receptor A (SRA; CD204) mediates the uptake of modified proteins, we hypothesized that the effects of MAA-modified proteins on macrophage function are primarily mediated through SRA. METHODS: We tested this hypothesis by exposing SPD-MAA to macrophages and measuring functions. SPD-MAA treatment significantly stimulated pro-inflammatory cytokine tumor necrosis factor-alpha (TNF-α) release in the macrophage cell line, RAW 264.7. RESULTS: A significant reduction in phagocytosis of zymosan particles was also observed. SPD-MAA stimulated a significant dose-dependent increase in TNF-α and interleukin (IL)-6 release from peritoneal macrophages (PMs) of wild-type (WT) mice. But significantly less TNF-α and IL-6 were released from PMs of SRA-/- mice. We observed a significant reduction in phagocytosis of zymosan particles in PMs from WT mice treated with SPD-MAA. No further SPD-MAA-induced reduction was seen in PMs from SRA-/- mice. SPD-MAA treatment significantly increased SRA mRNA expression, but had no effect on surface receptor protein expression. Protein kinase C alpha inhibitor and NF-κB inhibitor significantly reduced pro-inflammatory cytokine release in response to SPD-MAA. CONCLUSIONS: In conclusion, our data demonstrate that SRA is important for MAA-adducted protein-mediated effect on macrophage functions.


Subject(s)
Acetaldehyde/chemistry , Macrophages/drug effects , Macrophages/metabolism , Malondialdehyde/chemistry , Pulmonary Surfactant-Associated Protein A/pharmacology , Pulmonary Surfactant-Associated Protein D/pharmacology , Scavenger Receptors, Class A/genetics , Animals , Cells, Cultured , Dose-Response Relationship, Drug , Humans , Interleukin-6/metabolism , Mice , Mice, Knockout , Phagocytosis/drug effects , Pulmonary Surfactant-Associated Protein A/chemistry , Pulmonary Surfactant-Associated Protein D/chemistry , Rats , Scavenger Receptors, Class A/biosynthesis , Tumor Necrosis Factor-alpha/metabolism
8.
Biomolecules ; 5(4): 2987-3008, 2015 Nov 05.
Article in English | MEDLINE | ID: mdl-26556381

ABSTRACT

Drinking alcohol and smoking cigarettes results in the formation of reactive aldehydes in the lung, which are capable of forming adducts with several proteins and DNA. Acetaldehyde and malondialdehyde are the major aldehydes generated in high levels in the lung of subjects with alcohol use disorder who smoke cigarettes. In addition to the above aldehydes, several other aldehydes like 4-hydroxynonenal, formaldehyde and acrolein are also detected in the lung due to exposure to toxic gases, vapors and chemicals. These aldehydes react with nucleophilic targets in cells such as DNA, lipids and proteins to form both stable and unstable adducts. This adduction may disturb cellular functions as well as damage proteins, nucleic acids and lipids. Among several adducts formed in the lung, malondialdehyde DNA (MDA-DNA) adduct and hybrid malondialdehyde-acetaldehyde (MAA) protein adducts have been shown to initiate several pathological conditions in the lung. MDA-DNA adducts are pre-mutagenic in mammalian cells and induce frame shift and base-pair substitution mutations, whereas MAA protein adducts have been shown to induce inflammation and inhibit wound healing. This review provides an insight into different reactive aldehyde adducts and their role in the pathogenesis of lung disease.


Subject(s)
Aldehydes/toxicity , DNA Adducts/toxicity , Ethanol/toxicity , Respiratory Tract Diseases/chemically induced , Smoking/adverse effects , Tobacco Smoke Pollution/adverse effects , Aldehydes/metabolism , Animals , DNA Adducts/metabolism , Humans , Respiratory Tract Diseases/metabolism
9.
BMC Nutr ; 12015.
Article in English | MEDLINE | ID: mdl-27536382

ABSTRACT

BACKGROUND: Slightly more than 5 % of the United States population heavily consumes ethanol, i.e., more than 14 drinks for men and 7 drinks for women a week. Chronic ethanol consumption can result in increased liver disease, reduced recovery from burn injury, and more frequent and severe respiratory infections. Chronic ethanol over-consumption also leads to vitamin D dysmetabolism and depletion. Vitamin D is a fat-soluble pro-hormone that regulates musculoskeletal health, cellular proliferation/differentiation, and innate and adaptive immune response. METHODS: In this study, C57BL/6 mice were fed 20 % ethanol in their water ad libitum for 7 weeks. Some mice were fed either a standard chow or a modified diet containing 0.15 µg/day of diallyl disulfide (DADS). Whole blood, lung tissue, and bronchial alveolar lavage fluid (BALF) were collected at sacrifice and analyzed for 25(OH) D3, 1,25 (OH)2D3, vitamin D receptor VDR, CYP2E1, and CYP27B1 levels. RESULTS: Ethanol reduced 25(OH) D3 and 1,25 (OH)2D3 in lung tissue and BALF on average 31 %. The largest ethanol-mediated reduction was in the 1,25 (OH)2D3 (42 %) measured in the BALF. Dietary supplementation of DADS restored BALF and lung tissue protein of 25(OH) D3 and 1,25(OH)2D3 to control levels. Chronic ethanol consumption also resulted in tissue increases of vitamin D response (VDR) protein, Cyp2E1, and reductions in vitamin D-activating enzyme CYP27B1. All three of these effects were attenuated by dietary supplementation of DADS. CONCLUSIONS: In conclusion, the pulmonary metabolic disturbances mediated by chronic ethanol consumption as measured by 1,25(OH)2D3 protein levels, epithelial lining fluid, and lung tissue can be ameliorated by dietary supplementation of DADS in C57BL/6 mice.

10.
Alcohol Clin Exp Res ; 38(6): 1550-8, 2014 Jun.
Article in English | MEDLINE | ID: mdl-24891074

ABSTRACT

BACKGROUND: Alcohol use disorders are often associated with lung disease. Alcohol exposure leads to the production of reactive oxygen species, lipid peroxidation, and formation of malondialdehyde (MDA) as well as to induce the expression of cytochrome p450 2E1 (CYP2E1). Likewise, cigarette smoking can lead to lung lipid peroxidation and formation of MDA. MDA can bind to DNA forming MDA-deoxyguanosine (M1dG) adducts, which have been implicated in alcohol-related cancers and cardiovascular disease. Because CYP2E1 regulates MDA production, and our previous studies have shown that alcohol and cigarette smoke can lead to MDA formation, we hypothesized that CYP2E1 would modulate M1dG adduct formation and single-strand DNA damage in alcohol- and cigarette smoke-exposed lung cells and tissue. METHODS: Normal human bronchial epithelial cells (HBECs) were pretreated with 10 µM diallyl disulfide (DADS) for 1 hour and treated with 80 mM ethanol (EtOH) ± 5% cigarette smoke extract (CSE) for 3 hours for comet assay and 6 hours for CYP2E1, MDA, and M1dG adduct assays. C57BL/6 mice were administered 20% EtOH ad libitum in drinking water for 8 weeks and exposed to whole-body cigarette smoke for 5 weeks. Mice were also fed a CYP2E1 inhibitor, DADS, at 1 µM/g of feed in their daily diet for 7 weeks. Whole lung tissue homogenate was used for CYP2E1, MDA, and M1dG adduct assays. RESULTS: EtOH exposure significantly increased HBEC olive tail moment. DADS pretreatment of HBECs attenuated this EtOH effect. EtOH also induced MDA and M1dG adduct formation, which was also significantly reduced by DADS treatment. CSE ± EtOH did not enhance these effects. In lung tissue homogenate of 8-week alcohol-fed mice, MDA and M1dG adduct levels were significantly elevated in comparison with control mice and mice fed DADS while consuming alcohol. No increase in MDA and M1dG adduct formation was observed in 5-week cigarette smoke-exposed mice. CONCLUSIONS: These findings suggest that CYP2E1 plays a pivotal role in alcohol-induced M1dG adducts, and the use of DADS as dietary supplement can reverse the effects of alcohol on M1dG formation.


Subject(s)
Allyl Compounds/pharmacology , Cytochrome P-450 CYP2E1 Inhibitors/pharmacology , Disulfides/pharmacology , Ethanol/pharmacology , Purine Nucleosides/metabolism , Animals , Cells, Cultured , DNA Damage/drug effects , Enzyme-Linked Immunosorbent Assay , Female , Humans , Mice, Inbred C57BL , Respiratory Mucosa , Smoking/adverse effects , Smoking/metabolism
11.
Discov Med ; 12(67): 513-23, 2011 Dec.
Article in English | MEDLINE | ID: mdl-22204768

ABSTRACT

Airway hyperresponsiveness is an essential part of the definition of asthma associated temporally with exposure to allergens, certain respiratory viruses, pollutants such as ozone, and certain organic chemicals. Interleukin-13 (IL-13) is implicated as a central regulator in immunoglobulin E (IgE) synthesis, mucus hypersecretion, airway hyperresponsiveness, and fibrosis. The importance of IL-13 in allergic disorders in humans is supported by consistent associations between tissue IL-13 levels and genetic variants in the IL-13 gene and asthma and related traits. Single-nucleotide polymorphisms in IL-13 are associated with allergic phenotypes in several ethnically diverse populations. Glucocorticoids are anti-inflammatory medications often used as maintenance therapy in acute and chronic asthma; however, some patients with severe asthma are steroid resistant. IL-13 remains elevated in glucocorticoid insensitive asthma but not in glucocorticoid sensitive asthma. Thus targeting IL-13 and its associated receptors may be a therapeutic approach to the treatment of asthma and/or allergy. This review focuses on the role of IL-13 on airway hyperresponsiveness and corticosteroids resistant asthma both preclinically and clinically.


Subject(s)
Asthma/drug therapy , Asthma/genetics , Interleukin-13/genetics , Mutation/genetics , Asthma/complications , Asthma/physiopathology , Bronchial Hyperreactivity/complications , Bronchial Hyperreactivity/physiopathology , Humans , Receptors, Interleukin-13/metabolism , Signal Transduction
SELECTION OF CITATIONS
SEARCH DETAIL
...