Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Environ Entomol ; 53(3): 406-416, 2024 Jun 13.
Article in English | MEDLINE | ID: mdl-38555565

ABSTRACT

Termite hindguts are inhabited by symbionts that help with numerous processes, but changes in the gut microbiome due to season can potentially impact the physiology of termites. This study investigated the impact of seasonal changes on the composition of bacteria and protozoa in the termite gut. Termites were obtained monthly from May to October 2020 at a location in the central United States that typically experiences seasonal air temperatures ranging from < 0 to > 30 °C. The guts of 10 termites per biological replication were dissected and frozen within 1 day after collections. DNA was extracted from the frozen gut tissues and used for termite 16S rRNA mitochondrial gene analysis and bacterial 16S rRNA gene sequence surveys. Phylogenetic analysis of termite 16S rRNA gene sequences verified that the same colony was sampled across all time points. On processing bacterial 16S sequences, we observed alpha (observed features, Pielou's evenness, and Shannon diversity) and beta diversity (unweighted Unifrac, Bray-Curtis, and Jaccard) metrics to vary significantly across months. Based on the analysis of the composition of microbiomes with bias correction (ANCOM-BC) at the genus level, we found several significant bacterial taxa over collection months. In addition, Spearman correlation analysis demonstrated that 41 bacterial taxa were significantly correlated (positively and negatively) with average soil temperature. These results from a single termite colony suggest termite microbial communities go through seasonal changes in relative abundance related to temperature, although other seasonal effects cannot be excluded. Further investigations are required to conclusively define the consistency of microbial variation among different colonies with season.


Subject(s)
Bacteria , Gastrointestinal Microbiome , Isoptera , RNA, Ribosomal, 16S , Seasons , Animals , Isoptera/microbiology , RNA, Ribosomal, 16S/analysis , Bacteria/classification , Bacteria/genetics , Bacteria/isolation & purification
2.
J Exp Biol ; 224(19)2021 10 01.
Article in English | MEDLINE | ID: mdl-34515310

ABSTRACT

Termites are eusocial insects that host a range of prokaryotic and eukaryotic gut symbionts and can differentiate into a range of caste phenotypes. Soldier caste differentiation from termite workers follows two successive molts (worker-presoldier-soldier) that are driven at the endocrine level by juvenile hormone (JH). Although physiological and eusocial mechanisms tied to JH signaling have been studied, the role of gut symbionts in the caste differentiation process is poorly understood. Here, we used the JH analog methoprene in combination with the antibiotic kanamycin to manipulate caste differentiation and gut bacterial loads in Reticulitermes flavipes termites via four bioassay treatments: kanamycin, methoprene, kanamycin+methoprene, and an untreated (negative) control. Bioassay results demonstrated a significantly higher number of presoldiers in the methoprene treatment, highest mortality in kanamycin+methoprene treatment, and significantly reduced protist numbers in all treatments except the untreated control. Bacterial 16S rRNA gene sequencing provided alpha and beta diversity results that mirrored bioassay findings. From ANCOM analysis, we found that several bacterial genera were differentially abundant among treatments. Finally, follow-up experiments showed that if methoprene and kanamycin or untreated termites are placed together, zero or rescued presoldier initiation, respectively, occurs. These findings reveal that endogenous JH selects for symbiont compositions required to successfully complete presoldier differentiation. However, if the gut is voided before the influx of JH, it cannot select for the necessary symbionts that are crucial for molting. Based on these results, we are able to provide a novel example of linkages between gut microbial communities and host phenotypic plasticity.


Subject(s)
Isoptera , Adaptation, Physiological , Animals , Humans , Isoptera/genetics , Juvenile Hormones , Molting , RNA, Ribosomal, 16S/genetics
3.
J Econ Entomol ; 113(1): 367-374, 2020 02 08.
Article in English | MEDLINE | ID: mdl-31712806

ABSTRACT

Concerns on efficacies of termiticides used for soil treatment to prevent Formosan subterranean termite (Coptotermes formosanus Shiraki) infestations have prompted pest control companies to suggest that retreatments are necessary after flooding of homes. Therefore, to address concerns about the efficacy of termiticides after flooding, we designed a flooding simulation experiment in the laboratory. We used four formulated termiticides containing fipronil, imidacloprid, chlorantraniliprole, or bifenthrin as active ingredients (a.i.) and two colonies of field-collected C. formosanus for this study. Evaluations of each chemical at concentrations of 1, 10, and 25 ppm in both sand and soil were conducted in the laboratory by comparing termite mortalities in no-choice bioassays after exposure to flooded (for 1 wk) and unflooded substrates. Toxicity from bifenthrin and fipronil were not affected by flooding regardless of substrate type except at the lowest concentration tested. Toxicity from chlorantraniliprole was lower in flooded sand at 1 ppm but otherwise similar among flooding treatments. In flooded soil, toxicity from chlorantraniliprole was low at 1 ppm, but unexpectedly high in flooded conditions at 10 and 25 ppm. For all concentrations of imidacloprid-treated sand, mortality of C. formosanus was reduced after a flood. However, like chlorantraniliprole, 10 and 25 ppm of imidacloprid-treated soil in flooded conditions resulted in an increased toxicity on C. formosanus. Our study supports the idea that chemicals with a higher water solubility like imidacloprid may require a home to be retreated with less water-soluble termiticides or baits after a flood.


Subject(s)
Insecticides , Isoptera , Animals , Floods , Soil
SELECTION OF CITATIONS
SEARCH DETAIL
...