Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 20
Filter
Add more filters










Publication year range
1.
Sci Total Environ ; 929: 172590, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38642746

ABSTRACT

Harmful cyanobacterial blooms have increased globally, releasing hazardous cyanotoxins that threaten the safety of water resources. Constructed wetlands (CWs) are a nature-based and low-cost solution to purify and remove cyanotoxins from water. However, bio-mechanistic understanding of the biotransformation processes expected to drive cyanotoxin removal in such systems is poor, and primarily focused on bacteria. Thus, the present study aimed at exploring the fungal contribution to microcystin-LR and cylindrospermopsin biodegradation in CWs. Based on CW mesocosms, two experimental approaches were taken: a) amplicon sequencing studies were conducted to investigate the involvement of the fungal community; and b) CW fungal isolates were tested for their microcystin-LR and cylindrospermopsin degradation capabilities. The data uncovered effects of seasonality (spring or summer), cyanotoxin exposure, vegetation (unplanted, Juncus effusus or Phragmites australis) and substratum (sand or gravel) on the fungal community structure. Additionally, the arbuscular mycorrhizal fungus Rhizophagus and the endophyte Myrmecridium showed positive correlations with cyanotoxin removal. Fungal isolates revealed microcystin-LR-removal potentials of approximately 25 % in in vitro biodegradation experiments, while the extracellular chemical fingerprint of the cultures suggested a potential intracellular metabolization. The results from this study may help us understand the fungal contribution to cyanotoxin removal, as well as their ecology in CWs.


Subject(s)
Biodegradation, Environmental , Fungi , Microcystins , Wetlands , Microcystins/metabolism , Fungi/metabolism , Bacterial Toxins/metabolism , Alkaloids/metabolism , Cyanobacteria Toxins , Marine Toxins/metabolism , Water Pollutants, Chemical/metabolism , Waste Disposal, Fluid/methods , Uracil/analogs & derivatives , Uracil/metabolism
2.
Front Microbiol ; 15: 1271599, 2024.
Article in English | MEDLINE | ID: mdl-38444805

ABSTRACT

Anaerobic in vitro fermentation is widely used to simulate rumen kinetics and study the microbiome and metabolite profiling in a controlled lab environment. However, a better understanding of the interplay between the temporal dynamics of fermentation kinetics, metabolic profiles, and microbial composition in in vitro rumen fermentation batch systems is required. To fill that knowledge gap, we conducted three in vitro rumen fermentations with maize silage as the substrate, monitoring total gas production (TGP), dry matter degradability (dDM), and methane (CH4) concentration at 6, 12, 24, 36, and 48 h in each fermentation. At each time point, we collected rumen fluid samples for microbiome analysis and volatile fatty acid (VFA) analysis. Amplicon sequencing of 16S rRNA genes (V4 region) was used to profile the prokaryotic community structure in the rumen during the fermentation process. As the fermentation time increased, dDM, TGP, VFA concentrations, CH4 concentration, and yield (mL CH4 per g DM at standard temperature and pressure (STP)) significantly increased. For the dependent variables, CH4 concentration and yield, as well as the independent variables TGP and dDM, polynomial equations were fitted. These equations explained over 85% of the data variability (R2 > 0.85) and suggest that TGP and dDM can be used as predictors to estimate CH4 production in rumen fermentation systems. Microbiome analysis revealed a dominance of Bacteroidota, Cyanobacteria, Desulfobacterota, Euryarchaeota, Fibrobacterota, Firmicutes, Patescibacteria, Proteobacteria, Spirochaetota, and Verrucomicrobiota. Significant temporal variations in Bacteroidota, Campylobacterota, Firmicutes, Proteobacteria, and Spirochaetota were detected. Estimates of alpha diversity based on species richness and the Shannon index showed no variation between fermentation time points. This study demonstrated that the in vitro fermentation characteristics of a given feed type (e.g., maize silage) can be predicted from a few parameters (CH4 concentration and yield, tVFA, acetic acid, and propionic acid) without running the actual in vitro trial if the rumen fluid is collected from similar donor cows. Although the dynamics of the rumen prokaryotes changed remarkably over time and in accordance with the fermentation kinetics, more time points between 0 and 24 h are required to provide more details about the microbial temporal dynamics at the onset of the fermentation.

3.
J Anim Sci Biotechnol ; 14(1): 146, 2023 Dec 03.
Article in English | MEDLINE | ID: mdl-38042833

ABSTRACT

Yellow mealworm larvae (YML; Tenebrio molitor) are considered as a valuable insect species for animal feed due to their high nutritional values and ability to grow under different substrates and rearing conditions. Advances in the understanding of entomophagy and animal nutrition over the past decades have propelled research areas toward testing multiple aspects of YML to exploit them better as animal feed sources. This review aims to summarize various approaches that could be exploited to maximize the nutritional values of YML as an animal feed ingredient. In addition, YML has the potential to be used as an antimicrobial or bioactive agent to improve animal health and immune function in production animals. The dynamics of the nutritional profile of YML can be influenced by multiple factors and should be taken into account when attempting to optimize the nutrient contents of YML as an animal feed ingredient. Specifically, the use of novel land-based and aquatic feeding resources, probiotics, and the exploitation of larval gut microbiomes as novel strategies can assist to maximize the nutritional potential of YML. Selection of relevant feed supplies, optimization of ambient conditions, the introduction of novel genetic selection procedures, and implementation of effective post-harvest processing may be required in the future to commercialize mealworm production. Furthermore, the use of appropriate agricultural practices and technological improvements within the mealworm production sector should be aimed at achieving both economic and environmental sustainability. The issues highlighted in this review could pave the way for future approaches to improve the nutritional value of YML.

4.
FEMS Microbiol Ecol ; 99(9)2023 08 22.
Article in English | MEDLINE | ID: mdl-37553158

ABSTRACT

We investigated if activity of the pre-infective juveniles (J2s) of root-knot nematodes is linked to the recruitment of a specific microbiome on the nematode surface and/or to the composition of the surrounding microbiota. For this, we determined the J2 activity (active vs. non-motile, which referred to dead and immobile J2s) upon a 3-day incubation in soil suspensions and studied the composition of bacteria, protists, and fungi present on the nematode surface and in the suspensions using amplicon sequencing of the 16S/18S rRNA genes, and ITS region. We also amended suspensions with Pseudomonas protegens strain CHA0 to study its effects on J2 activity and microbial composition. The J2 activity was suppressed in soil suspensions, but increased when suspensions were amended with P. protegens CHA0. The active and non-motile J2s differed in the composition of surface-attached bacteria, which was altered by the presence of P. protegens CHA0 in the soil suspensions. The bacterial genera Algoriphagus, Pedobacter, and Bdellovibrio were enriched on active J2s and may have protected the J2s against antagonists. The incubation time appeared short for attachment of fungi and protists. Altogether, our study is a step forward in disentangling the complex nematode-microbe interactions in soil for more successful nematode control.


Subject(s)
Microbiota , Tylenchoidea , Animals , Soil , Suspensions , Tylenchoidea/genetics , Tylenchoidea/microbiology , Fungi/genetics , Bacteria/genetics , RNA, Ribosomal, 16S/genetics
5.
Virus Res ; 331: 199121, 2023 07 02.
Article in English | MEDLINE | ID: mdl-37086855

ABSTRACT

Soil viral ecology is a growing research field; however, the state of knowledge still lags behind that of aquatic systems. Therefore, to facilitate progress, the first Soil Viral Workshop was held to encourage international scientific discussion and collaboration, suggest guidelines for future research, and establish soil viral research as a concrete research area. The workshop took place at Søminestationen, Denmark, between 15 and 17th of June 2022. The meeting was primarily held in person, but the sessions were also streamed online. The workshop was attended by 23 researchers from ten different countries and from a wide range of subfields and career stages. Eleven talks were presented, followed by discussions revolving around three major topics: viral genomics, virus-host interactions, and viruses in the soil food web. The main take-home messages and suggestions from the discussions are summarized in this report.


Subject(s)
Viruses , Humans , Ecology , Food Chain , Genome, Viral
6.
Microb Ecol ; 85(2): 617-627, 2023 Feb.
Article in English | MEDLINE | ID: mdl-35229200

ABSTRACT

All plant tissues from leaves, stems, and roots are hosting a wide diversity of fungal species. Our understanding of the assembly of this diversity of fungi during the plant growth cycle is limited. Here, we characterized the mycobiome of three spring barley cultivars grown in Zealand, Denmark, at weekly intervals during a growth season from seedling emergence to senescence and seed maturity. A notable proportion of members of the fungal communities were shared among different plant organs, but community dynamics were tissue-specific. A severe attack of Puccinia hordei occurring during the vegetative stage had profound effects on the mycobiome, and P. hordei biomass displaced that of other taxa. Plant tissue type was the most important factor determining the mycobiome, but also plant age was contributing significantly. Using a random forest model, we found that specific members of the mycobiome were responding differently to plant age, for instance, Olpidium and Articulospora in roots, Dioszegia and Sporobolomyces in leaves, Pyrenophora in stems, and Epicoccum in heads. A co-occurrence network analysis revealed complex interactions among fungal OTUs, and network connectivity was changing as per plant growth stage and plant tissue type. This study contributes to the understanding of assembly of fungal communities in cereals by providing a detailed description of fungal communities associated with barley. This knowledge will be vital for microbiome assisted plant health management and our study will serve as an important baseline for future efforts to harness microbiota in cereal health.


Subject(s)
Ascomycota , Hordeum , Mycobiome , Fungi , Seedlings , Seasons , Soil Microbiology
7.
Microbiol Spectr ; 10(4): e0122622, 2022 08 31.
Article in English | MEDLINE | ID: mdl-35766498

ABSTRACT

While the plant host metabolome drives distinct enrichment of detrimental and beneficial members of the microbiome, the mechanistic interomics relationships remain poorly understood. Here, we studied microbiome and metabolome profiles of two Arabidopsis thaliana accessions after Fusarium oxysporum f.sp. mathioli (FOM) inoculation, Landsberg erecta (Ler-0) being susceptible and Col-0 being resistant against FOM. By using bacterial and fungal amplicon sequencing and targeted metabolite analysis, we observed highly dynamic microbiome and metabolome profiles across FOM host progression, while being markedly different between FOM-inoculated and noninoculated Col-0 and Ler-0. Co-occurrence network analysis revealed more robust microbial networks in the resistant Col-0 compared to Ler-0 during FOM infection. Correlation analysis revealed distinct metabolite-OTU correlations in Ler-0 compared with Col-0 which could possibly be explained by missense variants of the Rfo3 and Rlp2 genes in Ler-0. Remarkably, we observed positive correlations in Ler-0 between most of the analyzed metabolites and the bacterial phyla Proteobacteria, Bacteroidetes, Planctomycetes, Acidobacteria, and Verrucomicrobia, and negative correlations with Actinobacteria, Firmicutes, and Chloroflexi. The glucosinolates 4-methyoxyglucobrassicin, glucoerucin and indole-3 carbinol, but also phenolic compounds were strongly correlating with the relative abundances of indicator and hub OTUs and thus could be active in structuring the A. thaliana root-associated microbiome. Our results highlight interactive effects of host plant defense and root-associated microbiota on Fusarium infection and progression. Our findings provide significant insights into plant interomic dynamics during pathogen invasion and could possibly facilitate future exploitation of microbiomes for plant disease control. IMPORTANCE Plant health and fitness are determined by plant-microbe interactions which are guided by host-synthesized metabolites. To understand the orchestration of this interaction, we analyzed the distinct interomic dynamics in resistant and susceptible Arabidopsis ecotypes across different time points after infection with Fusarium oxysporum (FOM). Our results revealed distinct microbial profiles and network resilience during FOM infection in the resistant Col-0 compared with the susceptible Ler-0 and further pinpointed specific microbe-metabolite associations in the Arabidopsis microbiome. These findings provide significant insights into plant interomics dynamics that are likely affecting fungal pathogen invasion and could possibly facilitate future exploitation of microbiomes for plant disease control.


Subject(s)
Arabidopsis , Fusarium , Microbiota , Arabidopsis/genetics , Arabidopsis/metabolism , Arabidopsis/microbiology , Bacteria , Fusarium/genetics , Metabolome , Plant Diseases/microbiology
8.
PLoS One ; 16(10): e0259171, 2021.
Article in English | MEDLINE | ID: mdl-34699568

ABSTRACT

Plant associated microbiomes are known to confer fitness advantages to the host. Understanding how plant factors including biochemical traits influence host associated microbiome assembly could facilitate the development of microbiome-mediated solutions for sustainable plant production. Here, we examined microbial community structures of a set of well-characterized Arabidopsis thaliana mutants disrupted in metabolic pathways for the production of glucosinolates, flavonoids, or a number of defense signalling molecules. A. thaliana lines were grown in a natural soil and maintained under greenhouse conditions for 4 weeks before collection of roots for bacterial and fungal community profiling. We found distinct relative abundances and diversities of bacterial and fungal communities assembled in the individual A. thaliana mutants compared to their parental lines. Bacterial and fungal genera were mostly enriched than depleted in secondary metabolite and defense signaling mutants, except for flavonoid mutations on fungi communities. Bacterial genera Azospirillum and Flavobacterium were significantly enriched in most of the glucosinolate, flavonoid and signalling mutants while the fungal taxa Sporobolomyces and Emericellopsis were enriched in several glucosinolates and signalling mutants. Whilst the present study revealed marked differences in microbiomes of Arabidopsis mutants and their parental lines, it is suggestive that unknown enzymatic and pleiotropic activities of the mutated genes could contribute to the identified host-associated microbiomes. Notwithstanding, this study revealed interesting gene-microbiota links, and thus represents valuable resource data for selecting candidate A. thaliana mutants for analyzing the links between host genetics and the associated microbiome.


Subject(s)
Flavonoids/metabolism , Glucosinolates/metabolism , Microbiota , Plant Roots/metabolism , Arabidopsis , Azospirillum/pathogenicity , Basidiomycota/pathogenicity , Flavobacterium/pathogenicity , Flavonoids/genetics , Genes, Plant , Glucosinolates/genetics , Mutation , Plant Roots/genetics , Plant Roots/microbiology
9.
FEMS Microbiol Ecol ; 96(11)2020 10 21.
Article in English | MEDLINE | ID: mdl-32970821

ABSTRACT

Plants-microbiome associations are the result of millions of years of co-evolution. Due to breeding-accelerated plant evolution in non-native and highly managed soil, plant-microbe links could have been lost. We hypothesized that post-domestication breeding of wheat changed the root-associated microbiome. To test this, we analyzed root-associated fungal and bacterial communities shortly after emergence of seedlings representing a transect of wheat evolution including modern wheat, landraces and ancestors. Numbers of observed microbial taxa were highest in landraces bred in low-input agricultural systems, and lowest in ancestors that had evolved in native soils. The microbial communities of modern cultivars were different from those of landraces and ancestors. Old wheat accessions enriched Acidobacteria and Actinobacteria, while modern cultivars enriched OTUs from Candidatus Saccharibacteria, Verrucomicrobia and Firmicutes. The fungal pathogens Fusarium, Neoascochyta and Microdochium enriched in modern cultivars. Both bacterial and fungal communities followed a neutral assembly model when bulk soil was considered as the source community, but accessions of the ancient Triticum turgidum and T. monococcum created a more isolated environment in their roots. In conclusion, wheat root-associated microbiomes have dramatically changed through a transect of breeding history.


Subject(s)
Microbiota , Triticum , Plant Breeding , Plant Roots , Rhizosphere , Soil Microbiology
10.
Sci Total Environ ; 727: 138301, 2020 Jul 20.
Article in English | MEDLINE | ID: mdl-32330704

ABSTRACT

Earthworms are widely known to impact soil health, having a key role in nutrient cycling and are often referred to as soil engineers. They are vital for soil microbial assemblages particularly through their feeding and burrowing activity in soil. Earthworms feed on soil organic matter and litter, and the resulting casts alter the soil microbial community. However, the gut microbiome of earthworms remains less known. In this study, we used amplicon sequencing of the 16S rRNA gene for bacteria and 18S rRNA gene for eukaryotes to assess the gut community assemblages of earthworm species within three genera Aporrectodea, Allolobophora and Lumbricus that represent different life forms sharing the same habitat. The objective was to compare the gut microbiome profiles of eukaryotic and prokaryotic organisms to assess significance of earthworm life forms, and to explore the cross kingdom networks in an attempt to identify keystone species. We found a high eukaryotic diversity with a dominance of the SAR supergroup along with fungi and metazoan in the earthworm gut. The bacterial community were dominated by members of Proteobacteria, Acidobacteria, Actinobacteria, Firmicutes, and Verrucomicrobia. The eukaryotic and prokaryotic communities showed similar differences in alpha diversity, being lowest in Lumbricus herculeus. The beta diversity showed earthworm species as a key factor in shaping gut microbiomes with L. herculeus harboring distinct microbiomes compared to species of Aporrectodea caliginosa, A. longa, A. tuberculata and Allolobophora chlorotica. Cross kingdom networks showed high interactions between several protist and bacterial OTUs. In conclusion, this study suggested that the community assemblages of gut microbiomes were shaped by earthworm species and life form, and such assemblage consists of cross kingdom interactions among eukaryotes and prokaryotes.


Subject(s)
Gastrointestinal Microbiome , Microbiota , Oligochaeta , Animals , Phylogeny , RNA, Ribosomal, 16S
11.
Microb Ecol ; 79(2): 397-408, 2020 Feb.
Article in English | MEDLINE | ID: mdl-31448388

ABSTRACT

Fusarium head blight (FHB) is a devastating disease of wheat heads. It is caused by several species from the genus Fusarium. Several endophytic fungi also colonize wheat spikes asymptomatically. Pathogenic and commensal fungi share and compete for the same niche and thereby influence plant performance. Understanding the natural dynamics of the fungal community and how the pre-established species react to pathogen attack can provide useful information on the disease biology and the potential use of some of these endophytic organisms in disease control strategies. Fungal community composition was assessed during anthesis as well as during FHB attack in wheat spikes during 2016 and 2017 in two locations. Community metabarcoding revealed that endophyte communities are dominated by basidiomycete yeasts before anthesis and shift towards a more opportunistic ascomycete-rich community during kernel development. These dynamics are interrupted when Fusarium spp. colonize wheat spikes. The Fusarium pathogens appear to exclude other fungi from floral tissues as they are associated with a reduction in community diversity, especially in the kernel which they colonize rapidly. Similarly, the presence of several endophytes was negatively correlated with Fusarium spp. and linked with spikes that stayed healthy despite exposure to the pathogen. These endophytes belonged to the genera Cladosporium, Itersonillia and Holtermanniella. These findings support the hypothesis that some naturally occurring endophytes could outcompete or prevent FHB and represent a source of potential biological control agents in wheat.


Subject(s)
Endophytes/physiology , Fusarium/physiology , Mycobiome/physiology , Plant Diseases/microbiology , Triticum/microbiology
12.
Microbiome ; 7(1): 59, 2019 04 11.
Article in English | MEDLINE | ID: mdl-30975184

ABSTRACT

BACKGROUND: Plants actively shape their associated microbial communities by synthesizing bio-active substances. Plant secondary metabolites are known for their signaling and plant defense functions, yet little is known about their overall effect on the plant microbiome. In this work, we studied the effects of benzoxazinoids (BXs), a group of secondary metabolites present in maize, on the host-associated microbial structure. Using BX knock-out mutants and their W22 parental lines, we employed 16S and ITS2 rRNA gene amplicon analysis to characterize the maize microbiome at early growth stages. RESULTS: Rhizo-box experiment showed that BXs affected microbial communities not only in roots and shoots, but also in the rhizosphere. Fungal richness in roots was more affected by BXs than root bacterial richness. Maize genotype (BX mutants and their parental lines) as well as plant age explained both fungal and bacterial community structure. Genotypic effect on microbial communities was stronger in roots than in rhizosphere. Diverse, but specific, microbial taxa were affected by BX in both roots and shoots, for instance, many plant pathogens were negatively correlated to BX content. In addition, a co-occurrence analysis of the root microbiome revealed that BXs affected specific groups of the microbiome. CONCLUSIONS: This study provides insights into the role of BXs for microbial community assembly in the rhizosphere and in roots and shoots. Coupling the quantification of BX metabolites with bacterial and fungal communities, we were able to suggest a gatekeeper role of BX by showing its correlation with specific microbial taxa and thus providing insights into effects on specific fungal and bacterial taxa in maize roots and shoots. Root microbial co-occurrence networks revealed that BXs affect specific microbial clusters.


Subject(s)
Benzoxazines/metabolism , Host Microbial Interactions , Microbiota , Rhizosphere , Zea mays/microbiology , Bacteria/classification , Fungi/classification , Plant Roots/microbiology , RNA, Ribosomal, 16S/genetics , Secondary Metabolism , Soil Microbiology , Zea mays/metabolism
13.
Front Microbiol ; 8: 1729, 2017.
Article in English | MEDLINE | ID: mdl-28943873

ABSTRACT

Information on the diversity of fungal spores in air is limited, and also the content of airborne spores of fungal plant pathogens is understudied. In the present study, a total of 152 air samples were taken from rooftops at urban settings in Slagelse, DK, Wageningen NL, and Rothamsted, UK together with 41 samples from above oilseed rape fields in Rothamsted. Samples were taken during 10-day periods in spring and autumn, each sample representing 1 day of sampling. The fungal content of samples was analyzed by metabarcoding of the fungal internal transcribed sequence 1 (ITS1) and by qPCR for specific fungi. The metabarcoding results demonstrated that season had significant effects on airborne fungal communities. In contrast, location did not have strong effects on the communities, even though locations were separated by up to 900 km. Also, a number of plant pathogens had strikingly similar patterns of abundance at the three locations. Rooftop samples were more diverse than samples taken above fields, probably reflecting greater mixing of air from a range of microenvironments for the rooftop sites. Pathogens that were known to be present in the crop were also found in air samples taken above the field. This paper is one of the first detailed studies of fungal composition in air with the focus on plant pathogens and shows that it is possible to detect a range of pathogens in rooftop air samplers using metabarcoding.

14.
Front Plant Sci ; 8: 1550, 2017.
Article in English | MEDLINE | ID: mdl-28936223

ABSTRACT

Phragmites australis (Cav.) Trin. ex Steud. die-back is a widely-studied phenomenon that was first discovered in northern Europe and that, until recently, was almost unknown in the Mediterranean basin. It has been described as a complex syndrome affecting reed populations leading to their retreat and decline, with significant impacts on valuable ecosystem services. Among the factors that cause the decline, soil-living microorganisms can be crucial. The aims of this study were to analyze the diversity of oomycetes communities associated with reed stands, and to understand whether they could play a key role in the decline. Variations in the structure of oomycetes communities were studied by metabarcoding of the internal transcribed spacer (ITS) 1 region of ribosomal DNA, from the sediments of five Italian freshwater ecosystems. They were chosen to cover a large variability in terms of surface area, water depth, microclimate, and presence of documented reed retreat. From 96 samples collected from reed roots, rhizosphere, and bulk soil, we assembled 207661 ITS1 reads into 523 OTUs. We demonstrated that oomycete communities were structured by several factors, among which the most important was die-back occurrence. Our study also indicates that Pythiogeton spp. could be potentially involved in the development of die-back. The role of heavy metals in the soil was also explored, and cadmium concentration was shown to affect oomycetes distribution. This study represents a significant step forward for the characterization of microbial communities associated with reed die-back syndrome and helps to gain knowledge of the complexity of these important wet ecosystems.

15.
Front Plant Sci ; 8: 1357, 2017.
Article in English | MEDLINE | ID: mdl-28824687

ABSTRACT

The phyllosphere is an important habitat for a diverse microbiome and an important entry point for many pathogens. Factors that shape the phyllosphere microbiome and also the co-existence among members and how they affect disease development are largely understudied. In this study we examined the wheat mycobiome by using metabarcoding of the fungal ITS1 region. Leaf samples were taken from four cultivars grown at two locations in Denmark. Samples were taken from the three uppermost leaves and at three growth stages to better understand spatiotemporal variation of the mycobiome. Analysis of read abundances showed that geographical location had a major effect in shaping the mycobiome in the total dataset, but also leaf position, growth stage and cultivar were important drivers of fungal communities. Cultivar was most important in explaining variation in older leaves whereas location better explained the variation in younger leaves, suggesting that communities are shaped over time by the leaf environment. Network analysis revealed negative co-existence between Zymoseptoria tritici and the yeasts Sporobolomyces, Dioszegia, and Cystofilobasidiaceae. The relative abundance of Z. tritici and the yeasts was relatively constant between individual samples, suggesting that fast growing fungi rapidly occupy empty space in the phyllosphere.

16.
Plant Dis ; 100(8): 1564-1570, 2016 Aug.
Article in English | MEDLINE | ID: mdl-30686224

ABSTRACT

Verticillium dahliae is a soilborne pathogen and a threat to spinach seed production. The aim of this study was to understand the relation between V. dahliae soil inoculum and infection in harvested seed. Quantitative polymerase chain reaction was used for quantification of the pathogen. Semifield experiments in which spinach was grown in soils with different inoculum levels enabled us to determine a threshold level for V. dahliae DNA of 0.003 ng/g of soil for seed infection to occur. Soils from production fields were sampled in 2013 and 2014 during and before planting, as well as the harvested seed. Seed from plants grown in infested soils were infected with V. dahliae in samples from both the semifield and open-field experiments. Lower levels of pathogen were found in seed from spinach grown in soils with a scattered distribution of V. dahliae (one or two positive of three soil subsamples) than in soils with a uniform distribution of the pathogen (three of three positive soil subsamples). Our results showed that infection of V. dahliae in harvested seed strongly depended on the presence of pathogen inoculum in the soil.

17.
New Phytol ; 207(4): 1134-44, 2015 Sep.
Article in English | MEDLINE | ID: mdl-25898906

ABSTRACT

The phyllosphere mycobiome in cereals is an important determinant of crop health. However, an understanding of the factors shaping this community is lacking. Fungal diversity in leaves from a range of cultivars of winter wheat (Triticum aestivum), winter and spring barley (Hordeum vulgare) and a smaller number of samples from oat (Avena sativa), rye (Secale cereale) and triticale (Triticum × Secale) was studied using next-generation sequencing. The effects of host genotype, fungicide treatment and location on fungal communities were explored. In total, 635 251 fungal internal transcribed spacer (ITS) reads were obtained from 210 leaf samples. Visual disease assessments and relative read abundance of Zymoseptoria tritici and Ramularia collo-cygni were strongly positively related. Crop genotype at the species level explained 43% of the variance in the total dataset, followed by fungicide treatment (13%) and location (4%). Indicator species, including plant pathogens, responding to factors such as crop species, location and treatment were identified. Host genotype at both the species and cultivar level is important in shaping phyllosphere fungal communities, whereas fungicide treatment and location have minor effects. We found many host-specific fungal pathogens, but also a large diversity of fungi that were relatively insensitive to host genetic background, indicating that host-specific pathogens live in a 'sea' of nonspecific fungi.


Subject(s)
Edible Grain/genetics , Edible Grain/microbiology , Fungi/physiology , Microbiota , Antifungal Agents/pharmacology , Biodiversity , Fungi/drug effects , Genotype , Microbiota/drug effects , Principal Component Analysis , Species Specificity
18.
BMC Ecol ; 15: 3, 2015 Feb 12.
Article in English | MEDLINE | ID: mdl-25880249

ABSTRACT

BACKGROUND: Nematodes are extremely diverse and numbers of species are predicted to be more than a million. Studies on nematode diversity are difficult and laborious using classical methods and therefore high-throughput sequencing is an attractive alternative. Primers that have been used in previous sequence-based studies are not nematode specific but also amplify other groups of organisms such as fungi and plantae, and thus require a nematode enrichment step that may introduce biases. RESULTS: In this study an amplification strategy which selectively amplifies a fragment of the SSU from nematodes without the need for enrichment was developed. Using this strategy on DNA templates from a set of 22 agricultural soils, we obtained 64.4% sequences of nematode origin in total, whereas the remaining sequences were almost entirely from other metazoans. The nematode sequences were derived from a broad taxonomic range and most sequences were from nematode taxa that have previously been found to be abundant in soil such as Tylenchida, Rhabditida, Dorylaimida, Triplonchida and Araeolaimida. CONCLUSIONS: Our amplification and sequencing strategy for assessing nematode diversity was able to collect a broad diversity without prior nematode enrichment and thus the method will be highly valuable in ecological studies of nematodes.


Subject(s)
DNA, Helminth/isolation & purification , High-Throughput Nucleotide Sequencing , Nematoda/classification , Soil , Agriculture , Animals , Biodiversity , DNA Primers , Denmark , Nematoda/genetics , Polymerase Chain Reaction , Sequence Analysis, DNA
19.
J Microbiol Methods ; 110: 33-9, 2015 Mar.
Article in English | MEDLINE | ID: mdl-25602160

ABSTRACT

Culture-independent studies using next generation sequencing have revolutionized microbial ecology, however, oomycete ecology in soils is severely lagging behind. The aim of this study was to improve and validate standard techniques for using high throughput sequencing as a tool for studying oomycete communities. The well-known primer sets ITS4, ITS6 and ITS7 were used in the study in a semi-nested PCR approach to target the internal transcribed spacer (ITS) 1 of ribosomal DNA in a next generation sequencing protocol. These primers have been used in similar studies before, but with limited success. We were able to increase the proportion of retrieved oomycete sequences dramatically mainly by increasing the annealing temperature during PCR. The optimized protocol was validated using three mock communities and the method was further evaluated using total DNA from 26 soil samples collected from different agricultural fields in Denmark, and 11 samples from carrot tissue with symptoms of Pythium infection. Sequence data from the Pythium and Phytophthora mock communities showed that our strategy successfully detected all included species. Taxonomic assignments of OTUs from 26 soil sample showed that 95% of the sequences could be assigned to oomycetes including Pythium, Aphanomyces, Peronospora, Saprolegnia and Phytophthora. A high proportion of oomycete reads was consistently present in all 26 soil samples showing the versatility of the strategy. A large diversity of Pythium species including pathogenic and saprophytic species were dominating in cultivated soil. Finally, we analyzed amplicons from carrots with symptoms of cavity spot. This resulted in 94% of the reads belonging to oomycetes with a dominance of species of Pythium that are known to be involved in causing cavity spot, thus demonstrating the usefulness of the method not only in soil DNA but also in a plant DNA background. In conclusion, we demonstrate a successful approach for pyrosequencing of oomycete communities using ITS1 as the barcode sequence with well-known primers for oomycete DNA amplification.


Subject(s)
Daucus carota , High-Throughput Nucleotide Sequencing , Oomycetes/classification , Oomycetes/genetics , Phytophthora/classification , Polymerase Chain Reaction/methods , Soil Microbiology , Aphanomyces/genetics , DNA Barcoding, Taxonomic , DNA Primers , DNA, Ribosomal Spacer/genetics , Denmark , Genetic Variation , High-Throughput Nucleotide Sequencing/methods , Peronospora/genetics , Phytophthora/genetics , Pythium/genetics , Saprolegnia/genetics , Sequence Analysis, DNA , Species Specificity
20.
Virus Genes ; 44(2): 329-37, 2012 Apr.
Article in English | MEDLINE | ID: mdl-22086504

ABSTRACT

Since 2003, a new viral disease of eggplant (Solanum melongena L.) has been spreading in fields in the Jordan and Arava Valleys, Israel. The symptoms of this disease include mild leaf mottling and varying degrees of fruit distortion. This disease can be transmitted by mechanical sap inoculation, as well as by the whitefly Bemisia tabaci (Homoptera, Aleyrodidae) and has been tentatively named eggplant mild leaf mottle virus (EMLMV). Our study aimed to determine the complete sequence and genome organization of EMLMV. The extracted viral RNA was subjected to SOLiD next-generation sequence analysis and used as a template for reverse transcription synthesis, which was followed by ds-cDNA synthesis or PCR amplification. The ssRNA genome of EMLMV includes 9,280 nucleotides, excluding a 3' terminal poly-adenylated tail. The genome includes a putative single, large open reading frame (ORF) that encodes a polyprotein of 3,011 amino acids, a short overlapping ORF of PIPO protein comprised of 71 amino acids and 5' and 3' non-coding regions of 108 and 136 nucleotides, respectively. The deduced amino acid sequence of the EMLMV polyprotein is relatively close to that of sweet potato mild mottle virus (SPMMV), with 37% shared sequence identity. Among the four ipomoviruses, only SPMMV and the putative genus member EMLMV contain a helper component-proteinase (HC-Pro) gene. Like SPMMV-HC-Pro, EMLMV-HC-Pro also contains the highly conserved PTK domain that is thought to be involved in the aphid-assisted transmission of potyviruses.


Subject(s)
Cysteine Endopeptidases/genetics , Genome, Viral , Plant Diseases/virology , Potyviridae/enzymology , Potyviridae/isolation & purification , Solanum melongena/virology , Viral Proteins/genetics , Animals , Cluster Analysis , Hemiptera/virology , Israel , Molecular Sequence Data , Open Reading Frames , Phylogeny , Potyviridae/genetics , RNA, Viral/genetics , Sequence Analysis, DNA , Sequence Homology, Amino Acid
SELECTION OF CITATIONS
SEARCH DETAIL
...