Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Science ; 367(6473): 79-83, 2020 01 03.
Article in English | MEDLINE | ID: mdl-31896715

ABSTRACT

Particle accelerators represent an indispensable tool in science and industry. However, the size and cost of conventional radio-frequency accelerators limit the utility and reach of this technology. Dielectric laser accelerators (DLAs) provide a compact and cost-effective solution to this problem by driving accelerator nanostructures with visible or near-infrared pulsed lasers, resulting in a 104 reduction of scale. Current implementations of DLAs rely on free-space lasers directly incident on the accelerating structures, limiting the scalability and integrability of this technology. We present an experimental demonstration of a waveguide-integrated DLA that was designed using a photonic inverse-design approach. By comparing the measured electron energy spectra with particle-tracking simulations, we infer a maximum energy gain of 0.915 kilo-electron volts over 30 micrometers, corresponding to an acceleration gradient of 30.5 mega-electron volts per meter. On-chip acceleration provides the possibility for a completely integrated mega-electron volt-scale DLA.

2.
Nat Commun ; 10(1): 3309, 2019 Jul 25.
Article in English | MEDLINE | ID: mdl-31346175

ABSTRACT

Diamond hosts optically active color centers with great promise in quantum computation, networking, and sensing. Realization of such applications is contingent upon the integration of color centers into photonic circuits. However, current diamond quantum optics experiments are restricted to single devices and few quantum emitters because fabrication constraints limit device functionalities, thus precluding color center integrated photonic circuits. In this work, we utilize inverse design methods to overcome constraints of cutting-edge diamond nanofabrication methods and fabricate compact and robust diamond devices with unique specifications. Our design method leverages advanced optimization techniques to search the full parameter space for fabricable device designs. We experimentally demonstrate inverse-designed photonic free-space interfaces as well as their scalable integration with two vastly different devices: classical photonic crystal cavities and inverse-designed waveguide-splitters. The multi-device integration capability and performance of our inverse-designed diamond platform represents a critical advancement toward integrated diamond quantum optical circuits.

3.
Sci Rep ; 9(1): 8999, 2019 06 21.
Article in English | MEDLINE | ID: mdl-31227721

ABSTRACT

Inverse design methods produce nanophotonic devices with arbitrary geometries that show high efficiencies as well as novel functionalities. Ensuring fabricability during optimization of these unrestricted device geometries is a major challenge for these design methods. In this work, we construct a fabrication constraint penalty function for level set geometry representations of these devices. This analytical penalty function limits both the gap size and boundary curvature of a device. We incorporate this penalty in a fully automated optical design flow using a quasi-Newton optimization method. The performance of our design method is evaluated by designing a series of waveguide demultiplexers (WDM) and mode converters with various footprints and minimum feature sizes. Finally, we design and experimentally characterize three WDMs with a 80 nm, 120 nm and 160 nm feature size.

4.
Opt Express ; 26(18): 22801-22815, 2018 Sep 03.
Article in English | MEDLINE | ID: mdl-30184935

ABSTRACT

We propose a dielectric laser accelerator design based on a tapered slot waveguide structure for sub-relativistic electron acceleration. This tapering scheme allows for straightforward tuning of the phase velocity of the accelerating field along the propagation direction, which is necessary for maintaining synchronization with electrons as their velocities increase. Furthermore, the non-resonant nature of this design allows for better tolerance to experimental errors. We also introduce a method to design this continuously tapered structure based on the eikonal approximation, and give a working example based on realistic experimental parameters.

5.
Opt Express ; 26(4): 4023-4034, 2018 Feb 19.
Article in English | MEDLINE | ID: mdl-29475258

ABSTRACT

We present a gradient-based algorithm to design general 1D grating couplers without any human input from start to finish, including a choice of initial condition. We show that we can reliably design efficient couplers to have multiple functionalities in different geometries, including conventional couplers for single-polarization and single-wavelength operation, polarization-insensitive couplers, and wavelength-demultiplexing couplers. In particular, we design a fiber-to-chip blazed grating with under 0.2 dB insertion loss that requires a single etch to fabricate and no back-reflector.

7.
J Comput Aided Mol Des ; 28(4): 463-74, 2014 Apr.
Article in English | MEDLINE | ID: mdl-24510191

ABSTRACT

Accurate methods for predicting protein-ligand binding affinities are of central interest to computer-aided drug design for hit identification and lead optimization. Here, we used the mining minima (M2) method to predict cucurbit[7]uril binding affinities from the SAMPL4 blind prediction challenge. We tested two different energy models, an empirical classical force field, CHARMm with VCharge charges, and the Poisson-Boltzmann surface area solvation model; and a semiempirical quantum mechanical (QM) Hamiltonian, PM6-DH+, coupled with the COSMO solvation model and a surface area term for nonpolar solvation free energy. Binding affinities based on the classical force field correlated strongly with the experiments with a correlation coefficient (R(2)) of 0.74. On the other hand, binding affinities based on the QM energy model correlated poorly with experiments (R(2) = 0.24), due largely to two major outliers. As we used extensive conformational search methods, these results point to possible inaccuracies in the PM6-DH+ energy model or the COSMO solvation model. Furthermore, the different binding free energy components, solute energy, solvation free energy, and configurational entropy showed significant deviations between the classical M2 and quantum M2 calculations. Comparison of different classical M2 free energy components to experiments show that the change in the total energy, i.e. the solute energy plus the solvation free energy, is the key driving force for binding, with a reasonable correlation to experiment (R(2) = 0.56); however, accounting for configurational entropy further improves the correlation.


Subject(s)
Bridged-Ring Compounds/chemistry , Imidazoles/chemistry , Molecular Docking Simulation , Binding Sites , Models, Chemical , Molecular Conformation , Quantum Theory , Thermodynamics
8.
J Comput Aided Mol Des ; 28(3): 277-87, 2014 Mar.
Article in English | MEDLINE | ID: mdl-24477800

ABSTRACT

We used blind predictions of the 47 hydration free energies in the SAMPL4 challenge to test multiple partial charge models in the context of explicit solvent free energy simulations with the general AMBER force field. One of the partial charge models, IPolQ-Mod, is a fast continuum solvent-based implementation of the IPolQ approach. The AM1-BCC, restrained electrostatic potential (RESP) and IpolQ-Mod approaches all perform reasonably well (R(2) > 0.8), while VCharge, though faster, gives less accurate results (R(2) of 0.5). The AM1-BCC results are more accurate than those of RESP for tertiary amines and nitrates, but the overall difference in accuracy between these methods is not statistically significant. Interestingly, the IPolQ-Mod method is found to yield partial charges in very close agreement with RESP. This observation suggests that the success of RESP may be attributed to its fortuitously approximating the arguably more rigorous IPolQ approach.


Subject(s)
Molecular Dynamics Simulation , Thermodynamics , Water/chemistry , Models, Chemical , Static Electricity
9.
J Chem Phys ; 138(22): 224504, 2013 Jun 14.
Article in English | MEDLINE | ID: mdl-23781802

ABSTRACT

Continuum solvation models are widely used to estimate the hydration free energies of small molecules and proteins, in applications ranging from drug design to protein engineering, and most such models are based on the approximation of a linear dielectric response by the solvent. We used explicit-water molecular dynamics simulations with the TIP3P water model to probe this linear response approximation in the case of neutral polar molecules, using miniature cucurbituril and cyclodextrin receptors and protein side-chain analogs as model systems. We observe supralinear electrostatic solvent responses, and this nonlinearity is found to result primarily from waters' being drawn closer and closer to the solutes with increased solute-solvent electrostatic interactions; i.e., from solute electrostriction. Dielectric saturation and changes in the water-water hydrogen bonding network, on the other hand, play little role. Thus, accounting for solute electrostriction may be a productive approach to improving the accuracy of continuum solvation models.


Subject(s)
Water/chemistry , Cyclodextrins/chemistry , Macrocyclic Compounds/chemistry , Models, Molecular , Proteins/chemistry , Solvents/chemistry , Static Electricity
SELECTION OF CITATIONS
SEARCH DETAIL
...