Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Cancer Treat Res Commun ; 29: 100465, 2021.
Article in English | MEDLINE | ID: mdl-34598060

ABSTRACT

The Theranostics approach has full potential to completely transform the contemporary medicine system to a patient-centric approach, as it is emerging in quite efficient manner, over the past few years. The primary impetus of this review is to analyse the patent growth in the domain of breast cancer theranostics. This wholesome analysis provides an insight into the current technological and R & D advancement over the years, in breast cancer theranostics. Thus, guide the end-users in getting the conclusion for policymaking and other public recommendations. This patent assessment also foretells about the future trends to carry out further achievements. Due to their easy availability, information richness, & versatility, patent's role in R&D policy has been emphasized by stake holders of innovation including scientists time to time. Graphical Abstract: The figure illustrates the applied technologies used for breast cancer theranostics by top three forward cited patents (A) The oligonucleotides with specific sequences (comprised of at least one of DNA, RNA, PNA. LNA, UNA or combination)1 are capable of binding a targeted tumor protein (PARP1, HISTIHIB, HISTIHID, NCL, FBL, SFPQ, RPL12, ACTB, HIST1H4A, SSBP1, NONO, H2AFJ, and DDX21, forming a tumor protein complex or subunit or their fragments and might block the tumoral activity. These are also capable of binding to Ramos cells (Derived from Human Burkitt's lymphoma that is negative for Epstein Barr virus). These can also bind cell surface nucleolin and may inhibit cell proliferation. These molecules with detection agent detect the presence or level of disease specific protein. (B) These aptamers with chemical functionalization can be conjugated to an amine linker or high molecular weight non-immunogenic compound or a drug or cytotoxic moiety or labelled with fluorescent agent. These chemically modified aptamers can also bind disease - specific biomarkers e.g., circulating biomarkers, micro- vesicle surface antigens or their functional fragments and can be subsequently used for early diagnosis, prognosis or therapeutic purposes. 1PNA: Peptide Nucleic Acid. LNA: Locked Nucleic Acid. UNA: Unlocked Nucleic Acid.


Subject(s)
Breast Neoplasms/therapy , Nanomedicine/methods , Nanotechnology/methods , Precision Medicine/methods , Female , Humans
2.
RSC Adv ; 10(20): 11716-11726, 2020 Mar 19.
Article in English | MEDLINE | ID: mdl-35496595

ABSTRACT

Physiological stimulus-specific cargo release from nanoparticle carriers is a holy grail of drug delivery research. While the majority of such work is carried out in vitro with cell lines, widespread use of common mammalian model systems - mice and rats - is difficult due to the associated cost and regulatory restrictions. Here we use the inexpensive, easily reared, excellent genetic model system Drosophila melanogaster to test pH responsive cargo release from widely used mesoporous silica nanoparticles (MSNs) coated with pH sensitive polydopamine (PDA) and polyethylene glycol (PEG) polymers. We synthesized 650 ± 75 nm diameter PDA or PEG coated mesoporous silica nanoparticles loaded with a fluorescent dye and fed to individual adult flies. Subsequently, the passage of the particles were monitored through the fly gut. As in mammals, the fly intestine has multiple pH specific zones that are easily accessible for imaging and also genetic, biochemical or physiological manipulations. We observed that both the species of MSNs ruptured around the acidic (pH < 4.0) middle midgut of the flies. PEG coated particles showed sharper specificity of release in the acidic middle midgut of flies than the PDA coated ones and had less tendency to clump together. Our results clearly show that the Drosophila gut can be used as a model to test pH responsive biocompatible materials in vivo. Our work paves the way for greater use of Drosophila as an in vivo complete systemic model in drug delivery and smart materials research. It also suggests that such specific delivery of chemical/biological cargo can be exploited to study basic biology of the gut cells and their communication with other organs.

SELECTION OF CITATIONS
SEARCH DETAIL
...