Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Total Environ ; 947: 174575, 2024 Jul 06.
Article in English | MEDLINE | ID: mdl-38977087

ABSTRACT

Indigenous microbial communities in smelting areas are crucial for maintaining fragile ecosystem functions. However, the community assembly process and their responses to polymetallic pollution are poorly understood, especially the taxa in each bin from the amplicons that contributed to the assembly process. Herein, microbial diversity, co-occurrence patterns, assembly process and the intrinsic mechanisms across contamination gradients at a typical PbZn smelting site were systematically unravelled by high-throughput sequencing. The results showed a consistent compositional profile among the indigenous communities across sampling sites, wherein genera KD4-96 from Chloroflexi and Sphingomonas from Proteobacteria emerged as the most abundant taxa. Network modularity of the high- and middle-contaminated communities at Pb and Zn smelting sites was >0.44, indicating that community populations were clustered into modules to resist high heavy metal stress. Stochastic processes dominated the community assembly, with the greatest contribution from drift (DR), which was significantly correlated with Pb, Zn, Cr and Cu contents. What's particular was that the DR-controlled bins were dominated by Proteobacteria (typical r-strategists), while the HoS-controlled bins were by Chloroflexi (typical K-strategists). Furthermore, the proportion of DR in the bins dominated by Sphingomonadaceae (phylum Proteobacteria) increased gradually with the increase of heavy metal contents. These discoveries provide essential insights for community control in restoring and mitigating soil degradation at PbZn smelting sites.

2.
J Hazard Mater ; 445: 130498, 2023 03 05.
Article in English | MEDLINE | ID: mdl-36459883

ABSTRACT

Novel resource recovery technologies are required for metals-bearing hazardous wastes in order to achieve circular economy outcomes and industrial symbiosis. Iron oxide and co-occurring hydroxysulphate-bearing wastes are globally abundant and often contain other elements of value. This work addresses the biostimulation of indigenous microbial communities within an iron oxide/ hydroxysulphate-bearing waste and its effect on the subsequent recoverability of metals by hydrochloric, sulphuric, citric acids, and EDTA. Laboratory-scale flow-through column reactors were used to examine the effect of using glycerol (10% w/w) to stimulate the in situ microbial community in an iron oxide/ hydroxysulphate-bearing mine waste. The effects on the evolution of leachate chemistry, changes in microbiological community, and subsequent hydrometallurgical extractability of metals were studied. Results demonstrated increased leachability and selectivity of Pb, Cu, and Zn relative to iron after biostimulation with a total of 0.027 kg of glycerol per kg of waste. Biostimulation, which can be readily applied in situ, potentially opens new routes to metal recovery from globally abundant waste streams that contain jarosite and iron oxides.


Subject(s)
Glycerol , Metals, Heavy , Metals , Iron , Metals, Heavy/analysis , Industrial Waste
3.
J Environ Manage ; 317: 115332, 2022 Sep 01.
Article in English | MEDLINE | ID: mdl-35617861

ABSTRACT

A novel, circular economy-inspired approach for the "passive" (non-powered and reagent-free) treatment of dye-bearing effluent is presented. The treatment utilises the biogeochemical interaction of dye-bearing wastewater with hydrous ferric oxide (HFO) bearing sludges. The work presented demonstrates for the first time the reuse of HFO-rich waste sludges from potable water and mine water treatment. The waste was used directly without modification or reagent addition, as media/substrate in simple flow-through reactors for the decolourisation and biodegradation of methyl orange (MO) and mixed dyes textile effluent. Three phases of exploratory proof of concept work were undertaken. Columns containing HFO sludges were challenged with solution of MO, and MO amended with glycerol (Phase I), MO in a synthetic textile effluent recipe (Phase II), and real mixed textile effluent containing a mixture of dyes (Phase III). After an initial lag period extensive decolourisation of dye was observed in all cases at rates comparable with pure strains and engineered bioreactor processes, with evidence of biodegradation beyond simple cleavage of the mono azo chromophore and mineralisation. The microbiology of the initial sludge samples in both cases exhibited a diverse range of iron oxidising and reducing bacteria. However, post experiment the microbiology of sludge evolved from being dominated by Proteobacteria to being dominated by Firmicutes. Distinct changes in the microbial community structure were observed in post-treatment MWTS and WTWS where genera capable of iron and sulphate reduction and/or aromatic amine degradation were identified. Average nitrogen removal rates for the columns ranged from 27.8 to 194 g/m3/day which is higher than engineered sequential anaerobic-aerobic bioreactor. Postulated mechanisms for the fast anaerobic decolourisation, biodegradation, and mineralisation of the dyes (as well nitrogen transformations) include various direct and indirect enzymatic and metabolic reactions, as well as reductive attack by continuously regenerated reductants such as Fe(II), HFO bound Fe(II), FeS, and HS-. The ability of iron reducers to degrade aromatic rings is also considered important in the further biodegradation and complete mineralisation of organic carbon. The study reveals that abundant and ubiquitous HFO-rich waste sludges, can be used without amendment, as a substrate in simple flow-through bioremediation system for the decolourisation and partial biodegradation of dyes in textile effluent.


Subject(s)
Coloring Agents , Sewage , Azo Compounds/metabolism , Biodegradation, Environmental , Coloring Agents/chemistry , Ferric Compounds , Ferrous Compounds , Iron , Sewage/microbiology , Textile Industry
4.
Environ Sci Technol ; 53(16): 9502-9511, 2019 Aug 20.
Article in English | MEDLINE | ID: mdl-31317734

ABSTRACT

Legacy iron (Fe) and steel wastes have been identified as a significant source of silicate minerals, which can undergo carbonation reactions and thus sequester carbon dioxide (CO2). In reactor experiments, i.e., at elevated temperatures, pressures, or CO2 concentrations, these wastes have high silicate to carbonate conversion rates. However, what is less understood is whether a more "passive" approach to carbonation can work, i.e., whether a traditional slag emplacement method (heaped and then buried) promotes or hinders CO2 sequestration. In this paper, the results of characterization of material retrieved from a first of its kind drilling program on a historical blast furnace slag heap at Consett, U.K., are reported. The mineralogy of the slag material was near uniform, consisting mainly of melilite group minerals with only minor amounts of carbonate minerals detected. Further analysis established that total carbon levels were on average only 0.4% while average calcium (Ca) levels exceeded 30%. It was calculated that only ∼3% of the CO2 sequestration potential of the >30 Mt slag heap has been utilized. It is suggested that limited water and gas interaction and the mineralogy and particle size of the slag are the main factors that have hindered carbonation reactions in the slag heap.


Subject(s)
Iron , Steel , Carbon Dioxide , Carbonates , Industrial Waste
5.
Chemosphere ; 90(4): 1533-8, 2013 Jan.
Article in English | MEDLINE | ID: mdl-23041038

ABSTRACT

Hydrous ferric oxide (here termed 'ochre') sludge, an abundant waste product produced from the treatment of acid mine drainage (AMD), was used in this study for the removal of phosphorus (in the form of phosphate ions) from contaminated waters. The phosphorus uptake capacities of both raw and pelletized AMD solids were compared using batch and column tests. Addition of a cement binder to the AMD solids during pellet production led to significantly increased P-loading of the resultant solids compared to the raw sludge. Additionally, the pellets were found to continue to remove P in tests up to 7 d in duration whereas the unbound AMD sludge appeared to approach equilibrium with phosphate solution after approximately 60 min of contact time. In line with previous studies P uptake by the AMD solids was found to be primarily via adsorption. By contrast calcium phosphate precipitation was found to be the dominant removal mechanism for the cement-bound ochre pellets with a relatively small proportion of removal attributable to the AMD solids. SEM-EDX analysis of the surface of used pellets showed a Ca:P molar ratio close to that of hydroxyapatite (HAP). Continuous column tests on these pellets showed a rapid decrease in P removal capacity by the pellets over time, attributable to the formation of a passivating HAP surface layer.


Subject(s)
Construction Materials , Phosphorus/chemistry , Water Pollutants, Chemical/chemistry , Water Purification/methods , Adsorption , Mining , Phosphorus/analysis , Water Pollutants, Chemical/analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...