Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Philos Trans A Math Phys Eng Sci ; 380(2223): 20200386, 2022 May 16.
Article in English | MEDLINE | ID: mdl-35341308

ABSTRACT

Three methods for non-adiabatic dynamics are compared to highlight their capabilities. Multi-configurational time-dependent Hartree is a full grid-based solution to the time-dependent Schrödinger equation, variational multi-configurational Gaussian (vMCG) uses a less flexible but unrestricted Gaussian wavepacket basis, and trajectory surface hopping (TSH) replaces the nuclear wavepacket with a swarm of classical trajectories. Calculations with all methods using a model Hamiltonian were performed. The vMCG and TSH were also then run in a direct dynamics mode, with the potential energy surfaces calculated on-the-fly using quantum chemistry calculations. All dynamics calculations used the Quantics package, with the TSH calculations using a new interface to a surface hopping code. A novel approach to calculate adiabatic populations from grid-based quantum dynamics using a time-dependent discrete variable representation is presented, allowing a proper comparison of methods. This article is part of the theme issue 'Chemistry without the Born-Oppenheimer approximation'.

2.
Nat Commun ; 9(1): 63, 2018 01 04.
Article in English | MEDLINE | ID: mdl-29302026

ABSTRACT

The first steps in photochemical processes, such as photosynthesis or animal vision, involve changes in electronic and geometric structure on extremely short time scales. Time-resolved photoelectron spectroscopy is a natural way to measure such changes, but has been hindered hitherto by limitations of available pulsed light sources in the vacuum-ultraviolet and soft X-ray spectral region, which have insufficient resolution in time and energy simultaneously. The unique combination of intensity, energy resolution, and femtosecond pulse duration of the FERMI-seeded free-electron laser can now provide exceptionally detailed information on photoexcitation-deexcitation and fragmentation in pump-probe experiments on the 50-femtosecond time scale. For the prototypical system acetylacetone we report here electron spectra measured as a function of time delay with enough spectral and time resolution to follow several photoexcited species through well-characterized individual steps, interpreted using state-of-the-art static and dynamics calculations. These results open the way for investigations of photochemical processes in unprecedented detail.

SELECTION OF CITATIONS
SEARCH DETAIL
...