Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Phys Rev E ; 109(5-1): 054205, 2024 May.
Article in English | MEDLINE | ID: mdl-38907391

ABSTRACT

Swarmalators are entities that swarm through space and sync in time and are potentially considered to replicate the complex dynamics of many real-world systems. So far, the internal dynamics of swarmalators have been taken as a phase oscillator inspired by the Kuramoto model. Here we examine the internal dynamics utilizing an amplitude oscillator capable of exhibiting periodic and chaotic behaviors. To incorporate the dual interplay between spatial and internal dynamics, we propose a general model that keeps the properties of swarmalators intact. This adaptation calls for a detailed study, which we present in this paper. We establish our study with the Rössler oscillator by taking parameters from both chaotic and periodic regions. While the periodic oscillator mimics most of the patterns in the previous phase oscillator model, the chaotic oscillator brings some fascinating states.

2.
Phys Rev E ; 109(4-1): 044603, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38755809

ABSTRACT

We present a simple model of driven matter in a 1D medium with pinning impurities, applicable to magnetic domains walls, confined colloids, and other systems. We find rich dynamics, including hysteresis, reentrance, quasiperiodicity, and two distinct routes to chaos. In contrast to other minimal models of driven matter, the model is solvable: we derive the full phase diagram for small N, and for large N, we derive expressions for order parameters and several bifurcation curves. The model is also realistic. Its collective states match those seen in the experiments of magnetic domain walls.

4.
Chaos ; 34(2)2024 Feb 01.
Article in English | MEDLINE | ID: mdl-38363963

ABSTRACT

Synchronization is one of the emerging collective phenomena in interacting particle systems. Its ubiquitous presence in nature, science, and technology has fascinated the scientific community over the decades. Moreover, a great deal of research has been, and is still being, devoted to understand various physical aspects of the subject. In particular, the study of interacting active particles has led to exotic phase transitions in such systems which have opened up a new research front-line. Motivated by this line of work, in this paper, we study the directional synchrony among self-propelled particles. These particles move inside a bounded region, and crucially their directions are also coupled with spatial degrees of freedom. We assume that the directional coupling between two particles is influenced by the relative spatial distance which changes over time. Furthermore, the nature of the influence is considered to be both short and long-ranged. We explore the phase transition scenario in both the cases and propose an approximation technique which enables us to analytically find the critical transition point. The results are further supported with numerical simulations. Our results have potential importance in the study of active systems like bird flocks, fish schools, and swarming robots where spatial influence plays a pertinent role.

5.
Chaos ; 33(12)2023 Dec 01.
Article in English | MEDLINE | ID: mdl-38127290

ABSTRACT

Over the past few decades, the research community has been interested in the study of multi-agent systems and their emerging collective dynamics. These systems are all around us in nature, such as bacterial colonies, fish schools, and bird flocks, as well as in technology, such as microswimmers and robotics, to name a few. Flocking and swarming are two key components of the collective behaviors of multi-agent systems. In flocking, the agents coordinate their direction of motion, but in swarming, they congregate in space to organize their spatial position. We propose a minimal mathematical model of a locally interacting multi-agent system where the agents simultaneously swarm in space and exhibit flocking behavior. Various cluster structures are found depending on the interaction range. When the coupling strength value exceeds a crucial threshold, flocking behavior is observed. We do in-depth simulations and report the findings by changing the other parameters and with the incorporation of noise.

6.
Chaos ; 33(11)2023 Nov 01.
Article in English | MEDLINE | ID: mdl-37938924

ABSTRACT

We present a case study of swarmalators (mobile oscillators) that move on a 1D ring and are subject to pinning. Previous work considered the special case where the pinning in space and the pinning in the phase dimension were correlated. Here, we study the general case where the space and phase pinning are uncorrelated, both being chosen uniformly at random. This induces several new effects, such as pinned async, mixed states, and a first-order phase transition. These phenomena may be found in real world swarmalators, such as systems of vinegar eels, Janus matchsticks, electrorotated Quincke rollers, or Japanese tree frogs.

7.
Phys Rev E ; 108(3-1): 034217, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37849179

ABSTRACT

Swarmalators are oscillatory systems endowed with a spatial component, whose spatial and phase dynamics affect each other. Such systems can demonstrate fascinating collective dynamics resembling many real-world processes. Through this work, we study a population of swarmalators where they are divided into different communities. The strengths of spatial attraction, repulsion, as well as phase interaction differ from one group to another. Also, they vary from intercommunity to intracommunity. We encounter, as a result of variation in the phase coupling strength, different routes to achieve the static synchronization state by choosing several parameter combinations. We observe that when the intercommunity phase coupling strength is sufficiently large, swarmalators settle in the static synchronization state. However, with a significant small phase coupling strength the state of antiphase synchronization as well as chimeralike coexistence of sync and async are realized. Apart from rigorous numerical results, we have been successful to provide semianalytical treatment for the existence and stability of global static sync and the antiphase sync states.

8.
Sci Rep ; 13(1): 14331, 2023 08 31.
Article in English | MEDLINE | ID: mdl-37653103

ABSTRACT

We study the intricate interplay between ecological and evolutionary processes through the lens of the prisoner's dilemma game. But while previous studies on cooperation amongst selfish individuals often assume instantaneous interactions, we take into consideration delays to investigate how these might affect the causes underlying prosocial behavior. Through analytical calculations and numerical simulations, we demonstrate that delays can lead to oscillations, and by incorporating also the ecological variable of altruistic free space and the evolutionary strategy of punishment, we explore how these factors impact population and community dynamics. Depending on the parameter values and the initial fraction of each strategy, the studied eco-evolutionary model can mimic a cyclic dominance system and even exhibit chaotic behavior, thereby highlighting the importance of complex dynamics for the effective management and conservation of ecological communities. Our research thus contributes to the broader understanding of group decision-making and the emergence of moral behavior in multidimensional social systems.


Subject(s)
Lens, Crystalline , Lenses , Humans , Altruism , Biological Evolution , Decision Making
9.
Soft Matter ; 19(24): 4502-4518, 2023 Jun 21.
Article in English | MEDLINE | ID: mdl-37278702

ABSTRACT

Designing navigation strategies for search-time optimization remains of interest in various interdisciplinary branches in science. Herein, we focus on active Brownian walkers in noisy and confined environments, which are mediated by one such autonomous strategy, namely stochastic resetting. As such, resetting stops the motion and compels the walkers to restart from the initial configuration intermittently. The resetting clock is operated externally without any influence from the searchers. In particular, the resetting coordinates are either quenched (fixed) or annealed (fluctuating) over the entire topography. Although the strategy relies upon simple governing laws of motion, it shows a significant ramification for the search-time statistics, in contrast to the search process conducted by the underlying reset-free dynamics. Using extensive numerical simulations, we show that the resetting-driven protocols enhance the performance of these active searchers. This, however, depends robustly on the inherent search-time fluctuations, measured by the coefficient of variation of the underlying reset-free process. We also explore the effects of different boundaries and rotational diffusion constants on the search-time fluctuations in the presence of resetting. Notably, for the annealed condition, resetting is always found to expedite the search process. These features, as well as their applicability to more general optimization problems from queuing systems, computer science and randomized numerical algorithms, to active living systems such as enzyme turnover and backtracking recovery of RNA polymerases in gene expression, make resetting-based strategies universally promising.

10.
Phys Rev E ; 107(2-1): 024215, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36932525

ABSTRACT

We study a population of swarmalators (swarming/mobile oscillators) which run on a ring and are subject to random pinning. The pinning represents the tendency of particles to stick to defects in the underlying medium which competes with the tendency to sync and swarm. The result is rich collective behavior. A highlight is low dimensional chaos which in systems of ordinary, Kuramoto-type oscillators is uncommon. Some of the states (the phase wave and split phase wave) resemble those seen in systems of Janus matchsticks or Japanese tree frogs. The others (such as the sync and unsteady states) may be observable in systems of vinegar eels, electrorotated Quincke rollers, or other swarmalators moving in disordered environments.

SELECTION OF CITATIONS
SEARCH DETAIL
...