Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Preprint in English | bioRxiv | ID: ppbiorxiv-432759

ABSTRACT

Viruses hijack host metabolic pathways for their replicative advantage. Several observational trans-omics analyses associated carbon and amino acid metabolism in coronavirus disease 2019 (COVID-19) severity in patients but lacked mechanistic insights. In this study, using patient- derived multi-omics data and in vitro infection assays, we aimed to understand i) role of key metabolic pathways in severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) reproduction and ii) its association with disease severity. Our data suggests that monocytes are key to the altered immune response during COVID-19. COVID-19 infection was associated with increased plasma glutamate levels, while glucose and mannose levels were determinants of the disease severity. Monocytes showed altered expression pattern of carbohydrate and amino acid transporters, GLUT1 and xCT respectively in severe COVID-19. Furthermore, lung epithelial cells (Calu-3) showed a strong acute metabolic adaptation following infection in vitro by modulating central carbon metabolism. We found that glycolysis and glutaminolysis are essential for virus replication and blocking these metabolic pathways caused significant reduction in virus production. Taken together, our study highlights that the virus utilizes and re-wires pathways governing central carbon metabolism leading to metabolic toxicity. Thus, the host metabolic perturbation could be an attractive strategy to limit the viral replication and disease severity.

2.
Preprint in English | bioRxiv | ID: ppbiorxiv-070383

ABSTRACT

How Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2) infections engage cellular host pathways and innate immunity in infected cells remain largely elusive. We performed an integrative proteo-transcriptomics analysis in SARS-CoV-2 infected HuH7 cells to map the cellular response to the invading virus over time. We identified four pathways, ErbB, HIF-1, mTOR and TNF signaling, among others that were markedly modulated during the course of the SARS-CoV-2 infection in vitro. Western blot validation of the downstream effector molecules of these pathways revealed a significant reduction in activated S6K1 and 4E-BP1 at 72 hours post infection. Unlike other human respiratory viruses, we found a significant inhibition of HIF-1 through the entire time course of the infection, suggesting a crosstalk between the SARS-CoV-2 and the mTOR/HIF-1 signaling. Further investigations are required to better understand the molecular sequelae in order to guide potential therapy in the management of severe COVID-19 patients.

SELECTION OF CITATIONS
SEARCH DETAIL
...