Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
Opt Express ; 32(4): 6168-6177, 2024 Feb 12.
Article in English | MEDLINE | ID: mdl-38439326

ABSTRACT

In situ tunable photonic filters and memories are important for emerging quantum and classical optics technologies. However, most photonic devices have fixed resonances and bandwidths determined at the time of fabrication. Here we present an in situ tunable optical resonator on thin-film lithium niobate. By leveraging the linear electro-optic effect, we demonstrate widely tunable control over resonator frequency and bandwidth on two different devices. We observe up to ∼50 × tuning in the bandwidth over ∼50 V with linear frequency control of ∼230 MHz/V. We also develop a closed-form model predicting the tuning behavior of the device. This paves the way for rapid phase and amplitude control over light transmitted through our device.

2.
Sci Rep ; 14(1): 6663, 2024 Mar 20.
Article in English | MEDLINE | ID: mdl-38509245

ABSTRACT

Lithium niobate is a promising material for developing quantum acoustic technologies due to its strong piezoelectric effect and availability in the form of crystalline thin films of high quality. However, at radio frequencies and cryogenic temperatures, these resonators are limited by the presence of decoherence and dephasing due to two-level systems. To mitigate these losses and increase device performance, a more detailed picture of the microscopic nature of these loss channels is needed. In this study, we fabricate several lithium niobate acoustic wave resonators and apply different processing steps that modify their surfaces. These treatments include argon ion sputtering, annealing, and acid cleans. We characterize the effects of these treatments using three surface-sensitive measurements: cryogenic microwave spectroscopy measuring density and coupling of TLS to mechanics, X-ray photoelectron spectroscopy and atomic force microscopy. We learn from these studies that, surprisingly, increases of TLS density may accompany apparent improvements in the surface quality as probed by the latter two approaches. Our work outlines the importance that surfaces and fabrication techniques play in altering acoustic resonator coherence, and suggests gaps in our understanding as well as approaches to address them.

3.
Opt Express ; 30(13): 23177-23186, 2022 Jun 20.
Article in English | MEDLINE | ID: mdl-36225003

ABSTRACT

Integrated photonics operating at visible-near-infrared (VNIR) wavelengths offer scalable platforms for advancing optical systems for addressing atomic clocks, sensors, and quantum computers. The complexity of free-space control optics causes limited addressability of atoms and ions, and this remains an impediment on scalability and cost. Networks of Mach-Zehnder interferometers can overcome challenges in addressing atoms by providing high-bandwidth electro-optic control of multiple output beams. Here, we demonstrate a VNIR Mach-Zehnder interferometer on lithium niobate on sapphire with a CMOS voltage-level compatible full-swing voltage of 4.2 V and an electro-optic bandwidth of 2.7 GHz occupying only 0.35 mm2. Our waveguides exhibit 1.6 dB/cm propagation loss and our microring resonators have intrinsic quality factors of 4.4 × 105. This specialized platform for VNIR integrated photonics can open new avenues for addressing large arrays of qubits with high precision and negligible cross-talk.

4.
Nat Commun ; 13(1): 4532, 2022 Aug 04.
Article in English | MEDLINE | ID: mdl-35927246

ABSTRACT

Second-order nonlinear optical processes convert light from one wavelength to another and generate quantum entanglement. Creating chip-scale devices to efficiently control these interactions greatly increases the reach of photonics. Existing silicon-based photonic circuits utilize the third-order optical nonlinearity, but an analogous integrated platform for second-order nonlinear optics remains an outstanding challenge. Here we demonstrate efficient frequency doubling and parametric oscillation with a threshold of tens of micro-watts in an integrated thin-film lithium niobate photonic circuit. We achieve degenerate and non-degenerate operation of the parametric oscillator at room temperature and tune its emission over one terahertz by varying the pump frequency by hundreds of megahertz. Finally, we observe cascaded second-order processes that result in parametric oscillation. These resonant second-order nonlinear circuits will form a crucial part of the emerging nonlinear and quantum photonics platforms.

5.
Phys Rev Lett ; 127(13): 133602, 2021 Sep 24.
Article in English | MEDLINE | ID: mdl-34623823

ABSTRACT

A room-temperature mechanical oscillator undergoes thermal Brownian motion with an amplitude much larger than the amplitude associated with a single phonon of excitation. This motion can be read out and manipulated using laser light using a cavity-optomechanical approach. By performing a strong quantum measurement (i.e., counting single photons in the sidebands imparted on a laser), we herald the addition and subtraction of single phonons on the 300 K thermal motional state of a 4 GHz mechanical oscillator. To understand the resulting mechanical state, we implement a tomography scheme and observe highly non-Gaussian phase-space distributions. Using a maximum likelihood method, we infer the density matrix of the oscillator, and we confirm the counterintuitive doubling of the mean phonon number resulting from phonon addition and subtraction.

6.
Appl Opt ; 59(5): 1430, 2020 Feb 10.
Article in English | MEDLINE | ID: mdl-32225397

ABSTRACT

This publisher's note corrects the Funding section in Appl. Opt.58, 2235 (2019)APOPAI0003-693510.1364/AO.58.002235.

7.
Nat Commun ; 11(1): 1166, 2020 Mar 03.
Article in English | MEDLINE | ID: mdl-32127538

ABSTRACT

Efficient interconversion of both classical and quantum information between microwave and optical frequency is an important engineering challenge. The optomechanical approach with gigahertz-frequency mechanical devices has the potential to be extremely efficient due to the large optomechanical response of common materials, and the ability to localize mechanical energy into a micron-scale volume. However, existing demonstrations suffer from some combination of low optical quality factor, low electrical-to-mechanical transduction efficiency, and low optomechanical interaction rate. Here we demonstrate an on-chip piezo-optomechanical transducer that systematically addresses all these challenges to achieve nearly three orders of magnitude improvement in conversion efficiency over previous work. Our modulator demonstrates acousto-optic modulation with [Formula: see text] = 0.02 V. We show bidirectional conversion efficiency of [Formula: see text] with 3.3 µW  red-detuned optical pump, and [Formula: see text] with 323 µW blue-detuned pump. Further study of quantum transduction at millikelvin temperatures is required to understand how the efficiency and added noise are affected by reduced mechanical dissipation, thermal conductivity, and thermal capacity.

8.
Appl Opt ; 58(9): 2235-2247, 2019 Mar 20.
Article in English | MEDLINE | ID: mdl-31044926

ABSTRACT

A time-of-flight imaging system is proposed and its working principle demonstrated. To realize this system, a new device, a free-space optical mixer, is designed and fabricated. A scene is illuminated (flashed) with a megahertz-level amplitude-modulated light source, and the reflected light from the scene is collected by a receiver. The receiver consists of the free-space optical mixer, comprising a photoelastic modulator sandwiched between polarizers, placed in front of a standard complementary metal-oxide-semiconductor (CMOS) image sensor. This free-space optical mixer downconverts the megahertz-level amplitude modulation frequencies into the temporal bandwidth of the image sensor. A full-scale extension of the demonstrated system will be able to measure phases and Doppler shifts for the beat tones and use signal processing techniques to estimate the distance and velocity of each point in the illuminated scene with high accuracy.

9.
Phys Rev Lett ; 121(4): 040501, 2018 Jul 27.
Article in English | MEDLINE | ID: mdl-30095955

ABSTRACT

Photons and electrons transmit information to form complex systems and networks. Phonons on the other hand, the quanta of mechanical motion, are often considered only as carriers of thermal energy. Nonetheless, their flow can also be molded in fabricated nanoscale circuits. We design and experimentally demonstrate wires for phonons by patterning the surface of a silicon chip. Our device eliminates all but one channel of phonon conduction, allowing coherent phonon transport over millimeter length scales. We characterize the phononic wire optically, by coupling it strongly to an optomechanical transducer. The phononic wire enables new ways to manipulate information and energy on a chip. In particular, our result is an important step towards realizing on-chip phonon networks, in which quantum information is transmitted between nodes via phonons.

10.
Opt Express ; 26(17): 22075-22099, 2018 Aug 20.
Article in English | MEDLINE | ID: mdl-30130907

ABSTRACT

Rapid and low-power control over the direction of a radiating light field is a major challenge in photonics and a key enabling technology for emerging sensors and free-space communication links. Current approaches based on bulky motorized components are limited by their high cost and power consumption, while on-chip optical phased arrays face challenges in scaling and programmability. Here, we propose a solid-state approach to beam-steering using optomechanical antennas. We combine recent progress in simultaneous control of optical and mechanical waves with remarkable advances in on-chip optical phased arrays to enable low-power and full two-dimensional beam-steering of monochromatic light. We present a design of a silicon photonic system made of photonic-phononic waveguides that achieves 44° field of view with 880 resolvable spots by sweeping the mechanical wavelength with about a milliwatt of mechanical power. Using mechanical waves as nonreciprocal, active gratings allows us to quickly reconfigure the beam direction, beam shape, and the number of beams. It also enables us to distinguish between light that we send and receive.

11.
Sci Rep ; 7: 46313, 2017 04 13.
Article in English | MEDLINE | ID: mdl-28406177

ABSTRACT

Future quantum networks, in which superconducting quantum processors are connected via optical links, will require microwave-to-optical photon converters that preserve entanglement. A doubly-resonant electro-optic modulator (EOM) is a promising platform to realize this conversion. Here, we present our progress towards building such a modulator by demonstrating the optically-resonant half of the device. We demonstrate high quality (Q) factor ring, disk and photonic crystal resonators using a hybrid silicon-on-lithium-niobate material system. Optical Q factors up to 730,000 are achieved, corresponding to propagation loss of 0.8 dB/cm. We also use the electro-optic effect to modulate the resonance frequency of a photonic crystal cavity, achieving a electro-optic modulation coefficient between 1 and 2 pm/V. In addition to quantum technology, we expect that our results will be useful both in traditional silicon photonics applications and in high-sensitivity acousto-optic devices.

SELECTION OF CITATIONS
SEARCH DETAIL
...