Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Analyst ; 146(20): 6288-6296, 2021 Oct 11.
Article in English | MEDLINE | ID: mdl-34549732

ABSTRACT

Increased acidification of aquatic habitats due to climate change is damaging mollusks. Non-destructive methods for analysis are necessary to study these endangered species. We analyzed five Unionidae gastropods using Raman spectroscopy. Shells were primarily composed of aragonite, a polymorph of calcium carbonate found in shell microstructure. Lattice mode Raman peaks from vaterite, a thought to be rare polymorph of calcium carbonate, were identified in each mollusk. Vaterite is present in mollusks at instances of shell damage and subsequent repair. We demonstrate that Raman spectroscopy is sensitive to vaterite, and it may not be as rare as previously thought. We also collected Raman spectra across the interior of Lampsillis fasciola. This data was analyzed through multivariate analysis, combining Principal Component Analysis with Linear Discriminant Analysis (PCA-LDA). Results of PCA-LDA correlate with growth of the mollusks, demonstrating that Raman spectroscopy combined with multivariate analysis could be used to monitor shell growth.


Subject(s)
Mollusca , Spectrum Analysis, Raman , Animals , Calcium Carbonate , Discriminant Analysis , Fresh Water , Principal Component Analysis
2.
Biosensors (Basel) ; 8(2)2018 May 11.
Article in English | MEDLINE | ID: mdl-29751641

ABSTRACT

For many disease states, positive outcomes are directly linked to early diagnosis, where therapeutic intervention would be most effective. Recently, trends in disease diagnosis have focused on the development of label-free sensing techniques that are sensitive to low analyte concentrations found in the physiological environment. Surface-enhanced Raman spectroscopy (SERS) is a powerful vibrational spectroscopy that allows for label-free, highly sensitive, and selective detection of analytes through the amplification of localized electric fields on the surface of a plasmonic material when excited with monochromatic light. This results in enhancement of the Raman scattering signal, which allows for the detection of low concentration analytes, giving rise to the use of SERS as a diagnostic tool for disease. Here, we present a review of recent developments in the field of in vivo and in vitro SERS biosensing for a range of disease states including neurological disease, diabetes, cardiovascular disease, cancer, and viral disease.


Subject(s)
Biosensing Techniques/methods , Diagnostic Techniques and Procedures , Disease/etiology , Spectrum Analysis, Raman/methods
SELECTION OF CITATIONS
SEARCH DETAIL
...