Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 20
Filter
Add more filters










Publication year range
1.
Microorganisms ; 11(11)2023 Nov 08.
Article in English | MEDLINE | ID: mdl-38004739

ABSTRACT

Ciborinia camelliae Kohn is the causal agent of camellia flower blight. The fungus infects only the flowers of camellias. C. camelliae isolates obtained from symptomatic samples, collected in 13 different localities worldwide, were characterized by Multi-Locus Sequence Typing (MLST) using the following: (i) a nuclear ribosomal DNA internal transcribed spacer; (ii) subunit 2 of ß-tubulin (ß-TUB II), (iii) elongation factor 1-α (EF1α); and (iv) glycerol-3-phosphate dehydrogenase (GPDH). The variability of the strains was assessed using a universally primed-polymerase chain reaction (UP-PCR) with six universal primers. Gene sequence comparison showed high similarity among all the European strains and highlighted the diversity of the New Zealand and Chinese representative strains. The profiles obtained by UP-PCR confirmed the significant diversity of extra-European strains and identified subgroups within the European population. The presence of shared genetic profiles obtained from strains isolated in different countries (New Zealand and France) suggests the movement of strains from one location to another, which is probably due to the exchange of infected plant material. Moreover, our study shows the overall high intraspecific variability of C. camelliae, which is likely due to the sexual reproduction of the fungus, suggesting the risk of emergence of new pathotypes adapting to novel camellia varieties.

2.
Toxins (Basel) ; 15(4)2023 04 06.
Article in English | MEDLINE | ID: mdl-37104209

ABSTRACT

Fusarium mycotoxins commonly contaminate agricultural products resulting in a serious threat to both animal and human health. The co-occurrence of different mycotoxins in the same cereal field is very common, so the risks as well as the functional and ecological effects of mycotoxins cannot always be predicted by focusing only on the effect of the single contaminants. Enniatins (ENNs) are among the most frequently detected emerging mycotoxins, while deoxynivalenol (DON) is probably the most common contaminant of cereal grains worldwide. The purpose of this review is to provide an overview of the simultaneous exposure to these mycotoxins, with emphasis on the combined effects in multiple organisms. Our literature analysis shows that just a few studies on ENN-DON toxicity are available, suggesting the complexity of mycotoxin interactions, which include synergistic, antagonistic, and additive effects. Both ENNs and DON modulate drug efflux transporters, therefore this specific ability deserves to be explored to better understand their complex biological role. Additionally, future studies should investigate the interaction mechanisms of mycotoxin co-occurrence on different model organisms, using concentrations closer to real exposures.


Subject(s)
Fusarium , Mycotoxins , Animals , Humans , Food Contamination/analysis , Mycotoxins/toxicity , Mycotoxins/analysis , Insecta , Edible Grain/chemistry
3.
Mol Plant Microbe Interact ; 36(2): 131-133, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36513026

ABSTRACT

Ciborinia camelliae Kohn is a camellia pathogen belonging to family Sclerotiniaceae, infecting only flowers of camellias. To better understand the virulence mechanism in this species, the draft genome sequence of the Italian strain of C. camelliae was obtained with a hybrid approach, combining Illumina HiSeq paired reads and MinIon Nanopore long-read sequencing. This combination improved significantly the existing National Center for Biotechnology Information reference genome. The assembly contiguity was implemented decreasing the contig number from 2,604 to 49. The N50 contig size increased from 31,803 to 2,726,972 bp and the completeness of assembly increased from 94.5 to 97.3% according to BUSCO analysis. This work is foundational to allow functional analysis of the infection process in this scarcely known floral pathogen. [Formula: see text] Copyright © 2022 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.


Subject(s)
Ascomycota , Camellia , Camellia/genetics , Genome , Ascomycota/genetics , Flowers
4.
Microorganisms ; 10(8)2022 Jul 29.
Article in English | MEDLINE | ID: mdl-36013954

ABSTRACT

Streptomycetes are promising candidates for the biological control of Fusarium Head Blight (FHB) in wheat. Studies involving the use of streptomycetes as biological control agents (BCAs) have been limited to the application when the wheat plant is developed, close to the infection on the spike during flowering. Here, we tested the effects of seed treatment with the Streptomyces sp. DEF39 spores before sowing on FHB symptoms' development. The seed treatment protected the plant from infection by Fusarium graminearum by 49% (p = 0.04). We traced Streptomyces sp. DEF39 in plant organs using strain-specific primers here developed, showing that the streptomycete acts as an endophyte, colonizing the plant tissues up to the spike as well as the roots. This work suggests that it is possible to use a streptomycete as a seed coating BCA, able to partially protect wheat from FHB disease.

5.
Microorganisms ; 10(6)2022 May 28.
Article in English | MEDLINE | ID: mdl-35744633

ABSTRACT

Fusarium musae has recently been described as a cross-kingdom pathogen causing post-harvest disease in bananas and systemic and superficial infection in humans. The taxonomic identity of fungal cross-kingdom pathogens is essential for confirming the identification of the species on distant infected hosts. Understanding the level of variability within the species is essential to decipher the population homogeneity infecting human and plant hosts. In order to verify that F. musae strains isolated from fruits and patients are part of a common population and to estimate their overall diversity, we assembled, annotated and explored the diversity of the mitogenomes of 18 F. musae strains obtained from banana fruits and human patients. The mitogenomes showed a high level of similarity among strains with different hosts' origins, with sizes ranging from 56,493 to 59,256 bp. All contained 27 tRNA genes and 14 protein-coding genes, rps3 protein, and small and large ribosomal subunits (rns and rnl). Variations in the number of endonucleases were detected. A comparison of mitochondrial endonucleases distribution with a diverse set of Fusarium mitogenomes allowed us to specifically discriminate F. musae from its sister species F. verticillioides and the other Fusarium species. Despite the diversity in F. musae mitochondria, strains from bananas and strains from human patients group together, indirectly confirming F. musae as a cross-kingdom pathogen.

6.
Sci Total Environ ; 790: 148204, 2021 Oct 10.
Article in English | MEDLINE | ID: mdl-34380242

ABSTRACT

There are billions of books that in recent and in ancient times have been produced by the human race containing evidence of its intellectual and cultural efforts. Even when stored in libraries, not all these books survive over time undamaged, because in the biosphere their materials are potential nutrients. This is the unfortunate case of the History and Historical Documentation Library of the University of Milan, where biological agents have badly affected rare and valuable old books. An entomological monitoring was carried out using sticky traps and collecting insects during inspections. The beetle Gastrallus pubens Fairmaire, rarely identified in European libraries so far, was the main biological agent responsible for the book damage, since several tunnels due to larval activity and holes made by adults were observed. Using the Illumina MiSeq sequencing technology, Proteobacteria, Firmicutes and Actinobacteria were found to be the most abundant phyla. Ascomycota was the dominant phylum among three fungal phyla. As bacteria and fungi spread by the insects are primary indications of the insect presence in the library, in this paper a potential biomarker able to detect the G. pubens presence before visible infestation was searched for among the bacterial and fungal community peculiar in the insect frass and gut, but also found on books and the surfaces of shelves. Symbiotaphrina, an ascomycete fungus described as one of the symbiotic levuliform fungi, present in the anobiid beetles' gut, was the only one found in all samples analyzed and has therefore been proposed as a putative biomarker.


Subject(s)
Ascomycota , Fungi , Bacteria , Documentation , Humans , Risk Assessment , Symbiosis
7.
Microorganisms ; 9(7)2021 Jul 20.
Article in English | MEDLINE | ID: mdl-34361976

ABSTRACT

Grapevine powdery mildew is a principal fungal disease of grapevine worldwide. Even though it usually does not cause plant death directly, heavy infections can lead to extensive yield losses, and even low levels of the disease can negatively affect the quality of the wine. Therefore, intensive spraying programs are commonly applied to control the disease, which often leads to the emergence and spread of powdery mildew strains resistant to different fungicides. In this review, we describe major fungicide classes used for grapevine powdery mildew management and the most common single nucleotide mutations in target genes known to confer resistance to different classes of fungicides. We searched the current literature to review the development of novel molecular methods for quick detection and monitoring of resistance to commonly used single-site fungicides against Erysiphe necator. We analyze and compare the developed methods. From our investigation it became evident that this research topic has been strongly neglected and we hope that effective molecular methods will be developed also for resistance monitoring in biotroph pathogens.

8.
Mol Plant Microbe Interact ; 34(12): 1455-1457, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34388352

ABSTRACT

Fusarium musae causes crown rot of banana and it is also associated to clinical fusariosis. A chromosome-level genome assembly of F. musae F31 obtained combining Nanopore long reads and Illumina paired-end reads resulted in 12 chromosomes plus one contig with overall N50 of 4.36 Mb, and is presented together with its mitochondrial genome (58,072 bp). The F31 genome includes telomeric regions for 11 of the 12 chromosomes representing one of the most complete genomes available in the Fusarium fujikuroi species complex. The high-quality assembly of the F31 genome will be a valuable resource for studying the pathogenic interactions occurring between F. musae and banana. Moreover, it represents an important resource for understanding the genome evolution in the F. fujikuroi species complex.[Formula: see text] Copyright © 2021 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.


Subject(s)
Fusarium , Musa , Fusarium/genetics , Plant Diseases , Telomere
9.
Front Fungal Biol ; 2: 802511, 2021.
Article in English | MEDLINE | ID: mdl-37744111

ABSTRACT

Ciborinia camelliae is the causal agent of camellia flower blight (CFB). It is a hemibiotrophic pathogen, inoperculate Discomycete of the family Sclerotiniaceae. It shows host and organ specificity infecting only flowers of species belonging to the genus Camellia, causing serious damage to the ornamental component of the plant. In this work, the first mitochondrial genome of Ciborinia camellia is reported. The mitogenome was obtained by combining Illumina short read and Nanopore long read technology. To resolve repetitive elements, specific primers were designed and used for Sanger sequencing. The manually curated mitochondrial DNA (mtDNA) of the Italian strain DSM 112729 is a circular sequence of 114,660 bp, with 29.6% of GC content. It contains two ribosomal RNA genes, 33 transfer RNAs, one RNase P gene, and 62 protein-coding genes. The latter include one gene coding for a ribosomal protein (rps3) and the 14 typical proteins involved in the oxidative metabolism. Moreover, a partial mtDNA assembled from a contig list was obtained from the deposited genome assembly of a New Zealand strain of C. camelliae. The present study contributes to understanding the mitogenome arrangement and the evolution of this phytopathogenic fungus in comparison to other Sclerotiniaceae species and confirms the usefulness of mitochondrial analysis to define phylogenetic positioning of this newly sequenced species.

10.
Toxins (Basel) ; 12(9)2020 08 31.
Article in English | MEDLINE | ID: mdl-32878002

ABSTRACT

Streptomyces spp. can be exploited as biocontrol agents (BCAs) against plant pathogens such as Fusarium graminearum, the main causal agent of Fusarium head blight (FHB) and against the contamination of grains with deoxynivalenol (DON). In the present research, four Streptomyces strains active against F. graminearum in dual plate assays were characterized for their ability to colonize detached wheat grains in the presence of F. graminearum and to limit DON production. The pathogen and BCA abundance were assessed by a quantitative real-time PCR, while DON production was assessed by HPLC quantification and compared to ergosterol to correlate the toxin production to the amount of fungal mycelium. Fungal growth and mycotoxin production were assessed with both co-inoculation and late inoculation of the BCAs in vitro (three days post-Fusarium inoculation) to test the interaction between the fungus and the bacteria. The level of inhibition of the pathogen and the toxin production were strain-specific. Overall, a higher level of DON inhibition (up to 99%) and a strong reduction in fungal biomass (up to 71%) were achieved when streptomycetes were co-inoculated with the fungus. This research enabled studying the antifungal efficacy of the four Streptomyces strains and monitoring their development in DON-inducing conditions.


Subject(s)
Fusarium/growth & development , Pest Control, Biological , Polymerase Chain Reaction , Streptomyces/growth & development , Trichothecenes/metabolism , Triticum/microbiology , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Biomass , Chromatography, High Pressure Liquid , DNA, Bacterial/genetics , DNA, Bacterial/metabolism , DNA, Fungal/genetics , DNA, Fungal/metabolism , Fusarium/genetics , Fusarium/metabolism , Genetic Fitness , Rec A Recombinases/genetics , Rec A Recombinases/metabolism , Species Specificity , Streptomyces/genetics , Streptomyces/metabolism , Time Factors
11.
Int J Mol Sci ; 20(24)2019 Dec 04.
Article in English | MEDLINE | ID: mdl-31817248

ABSTRACT

Mycotoxins produced by Fusarium species on cereals represent a major concern for food safety worldwide. Fusarium toxins that are currently under regulation for their content in food include trichothecenes, fumonisins, and zearalenone. Biological control of Fusarium spp. has been widely explored with the aim of limiting disease occurrence, but few efforts have focused so far on limiting toxin accumulation in grains. The bacterial genus Streptomyces is responsible for the production of numerous drug molecules and represents a huge resource for the discovery of new molecules. Streptomyces spp. are also efficient plant colonizers and able to employ different mechanisms of control against toxigenic fungi on cereals. This review describes the outcomes of research using Streptomyces strains and/or their derived molecules to limit toxin production and/or contamination of Fusarium species in cereals. Both the scientific and patent literature were analyzed, starting from the year 2000, and we highlight promising results as well as the current pitfalls and limitations of this approach.


Subject(s)
Biological Control Agents/pharmacology , Edible Grain/microbiology , Food Contamination/prevention & control , Fusarium/drug effects , Streptomyces/chemistry , Biological Control Agents/metabolism , Databases, Factual , Fusarium/metabolism , Mycotoxins/metabolism , Patents as Topic , Streptomyces/metabolism
12.
Front Microbiol ; 10: 2356, 2019.
Article in English | MEDLINE | ID: mdl-31681219

ABSTRACT

Selection of biological control agents (BCA) profits from an integrated study of the tripartite interactions occurring among the BCA, the plant and the pathogen. The environment plays a crucial role in the efficacy of BCA, therefore, the selection process shall utmost mimic naturally occurring conditions. To identify effective biocontrol strains against Fusarium graminearum, the major cause of Fusarium head blight (FHB) in wheat and deoxynivalenol (DON) accumulation in grains, a workflow consisting of in vitro and in vivo assays was set up. Twenty-one Streptomyces strains, 16 of which were endophytes of different plants, were analyzed. In vitro and in vivo tests characterized their plant growth promoting (PGP) traits. Biocontrol activity against F. graminearum was firstly assessed with a dual culture assay. An in vivo germination blotter assay measured Fusarium foot rot and root rot symptoms (FFR-FRR) reduction as well as growth parameters of the plant treated with the Streptomyces strains. A selected subset of Streptomyces spp. strains was then assessed in a growth chamber measuring FFR symptoms and growth parameters of the wheat plant. The approach led to the identification of an effective Streptomyces sp. strain, DEF09, able to inhibit FHB on wheat in controlled conditions by blocking the spread of the pathogen at the infection site. The results were further confirmed in field conditions on both bread and durum wheat, where DEF09 decreased disease severity up to 60%. This work confirms that FRR and FFR pathosystems can be used to identify BCA effective against FHB.

13.
Int J Mol Sci ; 20(14)2019 Jul 19.
Article in English | MEDLINE | ID: mdl-31331112

ABSTRACT

The extracts of two mangrove species, Bruguiera cylindrica and Laguncularia racemosa, have been analyzed at sub-lethal concentrations for their potential to modulate biofilm cycles (i.e., adhesion, maturation, and detachment) on a bacterium, yeast, and filamentous fungus. Methanolic leaf extracts were also characterized, and MS/MS analysis has been used to identify the major compounds. In this study, we showed the following. (i) Adhesion was reduced up to 85.4% in all the models except for E. coli, where adhesion was promoted up to 5.10-fold. (ii) Both the sum and ratio of extracellular polysaccharides and proteins in mature biofilm were increased up to 2.5-fold and 2.6-fold in comparison to the negative control, respectively. Additionally, a shift toward a major production of exopolysaccharides was found coupled with a major production of both intracellular and extracellular reactive oxygen species. (iii) Lastly, detachment was generally promoted. In general, the L. racemosa extract had a higher bioactivity at lower concentrations than the B. cylindrica extract. Overall, our data showed a reduction in cells/conidia adhesion under B. cylindrica and L. racemosa exposure, followed by an increase of exopolysaccharides during biofilm maturation and a variable effect on biofilm dispersal. In conclusion, extracts either inhibited or enhanced biofilm development, and this effect depended on both the microbial taxon and biofilm formation step.


Subject(s)
Acanthaceae/chemistry , Biofilms/drug effects , Plant Extracts/pharmacology , Bacteria/drug effects , Bacteria/growth & development , Biofilms/growth & development , Chromatography, Liquid , Fungi/drug effects , Fungi/growth & development , Mass Spectrometry , Metabolome , Metabolomics/methods , Plant Extracts/chemistry , Plant Leaves/chemistry , Reactive Oxygen Species/metabolism
14.
J Environ Manage ; 245: 264-272, 2019 Sep 01.
Article in English | MEDLINE | ID: mdl-31158678

ABSTRACT

The lack of deep knowledge of plant pathogenic fungal biofilms is reflected in the few existing environmental-friendly options for controlling fungal plant disease. Indeed, chemical fungicides still dominate the market but present-day concerns about their real efficacy, increasing awareness of the risk they pose to human health and the environment, and the incidence of fungicide resistance have all led to the current trend of near zero-market-tolerance for pesticide residues in fruit and vegetables. Here, essential oils (PK and PK-IK) from the edible leaves of two cultivars of Perilla frutescens are proposed as new, effective, non-toxic, eco-friendly pesticide-free options suitable for a preventive or integrative approach for sustainable crop protection and product preservation. PK and PK-IK were extracted and characterized, and their ability to affect the biofilm formation of the phytopathogenic model fungi Colletotrichum musae, Fusarium dimerum and Fusarium oxysporum was studied at non-lethal doses. Both essential oils at 1000 and 2000 mg l-1 showed excellent anti-biofilm performance: i) reducing conidia adhesion up to 80.3 ±â€¯16.2%; ii) inhibiting conidia germination up to 100.0 ±â€¯0.0%; iii) affecting biofilm structural development, with a reduction in dry weight of up to 100.0 ±â€¯0.0% and extracellular polysaccharides and proteins up to 81.4 ±â€¯8.0% and 51.0 ±â€¯6.1% respectively. In all cases PK-IK showed better activity than PK.


Subject(s)
Oils, Volatile , Perilla frutescens , Biofilms , Fungi , Humans , Plant Leaves
15.
PeerJ ; 7: e6905, 2019.
Article in English | MEDLINE | ID: mdl-31198624

ABSTRACT

Biocontrol microorganisms are emerging as an effective alternative to pesticides. Ideally, biocontrol agents (BCAs) for the control of fungal plant pathogens should be selected by an in vitro method that is high-throughput and is predictive of in planta efficacy, possibly considering environmental factors, and the natural diversity of the pathogen. The purpose of our study was (1) to assess the effects of Fusarium strain diversity (N = 5) and culture media (N = 6) on the identification of biological control activity of Streptomyces strains (N = 20) against Fusarium pathogens of wheat in vitro and (2) to verify the ability of our in vitro screening methods to simulate the activity in planta. Our results indicate that culture media, Fusarium strain diversity, and their interactions affect the results of an in vitro selection by dual culture assay. The results obtained on the wheat-based culture media resulted in the highest correlation score (r = 0.5) with the in planta root rot (RR) inhibition, suggesting that this in vitro method was the best predictor of in planta performance of streptomycetes against Fusarium RR of wheat assessed as extension of the necrosis on the root. Contrarily, none of the in vitro plate assays using the media tested could appropriately predict the activity of the streptomycetes against Fusarium foot rot symptoms estimated as the necrosis at the crown level. Considering overall data of correlation, the activity in planta cannot be effectively predicted by dual culture plate studies, therefore improved in vitro methods are needed to better mimic the activity of biocontrol strains in natural conditions. This work contributes to setting up laboratory standards for preliminary screening assays of Streptomyces BCAs against fungal pathogens.

16.
BMC Microbiol ; 16(1): 272, 2016 11 09.
Article in English | MEDLINE | ID: mdl-27829359

ABSTRACT

BACKGROUND: In the search for new natural resources for crop protection, streptomycetes are gaining interest in agriculture as plant growth promoting bacteria and/or biological control agents. Because of their peculiar life cycle, in which the production of secondary metabolites is synchronized with the development of aerial hyphae and sporulation, the commonly used methods to screen for bacterial antagonists need to be adapted. RESULTS: The dual culture assay was standardized in terms of inoculation timing of Streptomyces antagonist and pathogen, and growth rate of different fungal pathogens. In case of fast-growing fungi, inoculation of the antagonist 2 or 3 days prior to the pathogen resulted in significantly stronger inhibition of mycelium growth. One hundred and thirty Streptomyces strains were evaluated against six destructive soil borne pathogens. The activity of strains varied from broad-spectrum to highly specific inhibition of individual pathogens. All strains inhibited at least one tested pathogen. Three strains, which combined the largest broad-spectrum with the highest inhibition activity, were selected for further characterization with four vegetable species. All of them were able to colonize seed surface of all tested vegetable crops. They mostly improved radicle and hypocotyl growth in vitro, although no statistically significant enhancement of biomass weight was observed in vivo. Occasionally, transient negative effects on germination and plant growth were observed. CONCLUSIONS: The adapted dual culture assay allowed us to compare the inhibition of individual Streptomyces strains against six fungal soil borne pathogens. The best selected strains were able to colonize the four vegetable crops and have a potential to be developed into biocontrol products. Although they occasionally negatively influenced plant growth, these effects did not persist during the further development. Additional in vivo studies are needed to confirm their potential as biological control or plant growth promoting agents.


Subject(s)
Fungi/physiology , Plant Diseases/microbiology , Seeds/growth & development , Soil Microbiology , Streptomyces/physiology , Antibiosis , Biological Control Agents , Crops, Agricultural/microbiology , Fungi/pathogenicity , Hyphae/growth & development , Hypocotyl/growth & development , Indoleacetic Acids/pharmacology , Mycelium/drug effects , Mycelium/growth & development , Plant Diseases/prevention & control , Plant Roots/microbiology , Seeds/microbiology , Streptomyces/metabolism
17.
Front Microbiol ; 7: 714, 2016.
Article in English | MEDLINE | ID: mdl-27242735

ABSTRACT

Lettuce drop, caused by the soil borne pathogen Sclerotinia sclerotiorum, is one of the most common and serious diseases of lettuce worldwide. Increased concerns about the side effects of chemical pesticides have resulted in greater interest in developing biocontrol strategies against S. sclerotiorum. However, relatively little is known about the mechanisms of Streptomyces spp. as biological control agents against S. sclerotiorum on lettuce. Two Streptomyces isolates, S. exfoliatus FT05W and S. cyaneus ZEA17I, inhibit mycelial growth of Sclerotinia sclerotiorum by more than 75% in vitro. We evaluated their biocontrol activity against S. sclerotiorum in vivo, and compared them to Streptomyces lydicus WYEC 108, isolated from Actinovate®. When Streptomyces spp. (10(6) CFU/mL) were applied to S. sclerotiorum inoculated substrate in a growth chamber 1 week prior lettuce sowing, they significantly reduced the risk of lettuce drop disease, compared to the inoculated control. Interestingly, under field conditions, S. exfoliatus FT05W and S. cyaneus ZEA17I protected lettuce from drop by 40 and 10% respectively, whereas S. lydicus WYEC 108 did not show any protection. We further labeled S. exfoliatus FT05W and S. cyaneus ZEA17I with the enhanced GFP (EGFP) marker to investigate their rhizosphere competence and ability to colonize lettuce roots using confocal laser scanning microscopy (CLSM). The abundant colonization of young lettuce seedlings by both strains demonstrated Streptomyces' capability to interact with the host from early stages of seed germination and root development. Moreover, the two strains were detected also on 2-week-old roots, indicating their potential of long-term interactions with lettuce. Additionally, scanning electron microscopy (SEM) observations showed EGFP-S. exfoliatus FT05W endophytic colonization of lettuce root cortex tissues. Finally, we determined its viability and persistence in the rhizosphere and endorhiza up to 3 weeks by quantifying its concentration in these compartments. Based on these results we conclude that S. exfoliatus FT05W has high potential to be exploited in agriculture for managing soil borne diseases barely controlled by available plant protection products.

18.
Front Microbiol ; 6: 25, 2015.
Article in English | MEDLINE | ID: mdl-25705206

ABSTRACT

Beneficial microorganisms are increasingly used in agriculture, but their efficacy often fails due to limited knowledge of their interactions with plants and other microorganisms present in rhizosphere. We studied spatio-temporal colonization dynamics of lettuce roots and rhizosphere by genetically modified Streptomyces spp. Five Streptomyces strains, strongly inhibiting in vitro the major soil-borne pathogen of horticultural crops, Sclerotinia sclerotiorum, were transformed with pIJ8641 plasmid harboring an enhanced green fluorescent protein marker and resistance to apramycin. The fitness of transformants was compared to the wild-type strains and all of them grew and sporulated at similar rates and retained the production of enzymes and selected secondary metabolites as well as in vitro inhibition of S. sclerotiorum. The tagged ZEA17I strain was selected to study the dynamics of lettuce roots and rhizosphere colonization in non-sterile growth substrate. The transformed strain was able to colonize soil, developing roots, and rhizosphere. When the strain was inoculated directly on the growth substrate, significantly more t-ZEA17I was re-isolated both from the rhizosphere and the roots when compared to the amount obtained after seed coating. The re-isolation from the rhizosphere and the inner tissues of surface-sterilized lettuce roots demonstrated that t-ZEA17I is both rhizospheric and endophytic.

19.
J Agric Food Chem ; 56(24): 11830-7, 2008 Dec 24.
Article in English | MEDLINE | ID: mdl-19053373

ABSTRACT

HPLC/DAD/MS analysis of the phenolic acids and anthocyanin content of three cultivars of Solanum tuberosum L. (Vitelotte Noire, Highland Burgundy Red, with pigmented flesh, and Kennebec with white pulp) was performed. The analyses were carried out both on fresh tubers and after cooking treatments (boiling and microwaves). Starch digestibility and the % of resistant starch were also determined on cooked tubers by in vitro methods. For the pigmented potatoes, the heating treatment did not cause any changes in the phenolic acids content, while anthocyanins showed only a small decrement (16-29%). The cv. Highland Burgundy Red showed anthocyanins and phenolic acid concentrations close to 1 g/kg and more than 1.1 g/kg, respectively. Vitellotte Noire showed the highest amounts of resistant starch. Potato starch digestibility and % of resistant starch, considered as a component of dietary fiber, were affected both by cultivar and by heating/cooling treatments.


Subject(s)
Alkaloids/chemistry , Anthocyanins/chemistry , Food Handling , Hydroxybenzoates/chemistry , Pigments, Biological/analysis , Solanum tuberosum/chemistry , Starch/chemistry , Food Handling/methods , Plant Tubers/chemistry , Solanum tuberosum/ultrastructure , Starch/ultrastructure
20.
Mycol Res ; 108(Pt 2): 170-82, 2004 Feb.
Article in English | MEDLINE | ID: mdl-15119354

ABSTRACT

Interactions between the mycoparasite Cladosporium tenuissimum and the bean rust Uromyces appendiculatus were studied through light and electron microscopy in vitro at the host-parasite interface. Urediniospore germination decreased on contact with ungerminated C. tenuissimum conidia, possibly due to antibiosis mechanisms. C. tenuissimum grew towards the bean rust spores and coiled around their germ tubes. Penetration of the urediniospores occurred either enzymatically and/or mechanically, through appressorium or infection cushion structures, from which a thin penetrating hypha was generated. Enzyme production by the mycoparasite was suggested by the loosening of the matricial components of the spore wall, which sometimes left chitin fibrils visible. Mycoparasite hyphae grew within the host spore, emptied its content, and emerged profusely forming conidiophores and conidia. C. tenuissimum was able to grow on media containing laminarin, suggesting the ability of producing glucanases, but not when chitin was used as the sole carbon source. Conidia that had been grown on a sugar-rich medium, filtered, and extracted with organic solvents, were found to contain cladosporol and related compounds. Complete control of the bean rust disease was achieved by application of C. tenuissimum culture filtrates but not by conidial suspensions. This is the first report of parasitism by C. tenuissimum on U. appendiculatus. These investigations provide additional observations on a genus besides Melampsora and Cronartium from which this fungus has been isolated and tested to date. The possible role of environmental factors for the exploitation of this organism as a biocontrol agent is also mentioned.


Subject(s)
Antibiosis , Basidiomycota/growth & development , Cladosporium/growth & development , Pest Control, Biological , Phaseolus/microbiology , Plant Diseases/microbiology , Spores, Fungal/physiology , Basidiomycota/physiology , Microscopy, Electron , Microscopy, Electron, Scanning , Plant Leaves/microbiology
SELECTION OF CITATIONS
SEARCH DETAIL
...