Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 23
Filter
Add more filters










Publication year range
1.
HGG Adv ; 4(4): 100241, 2023 Oct 12.
Article in English | MEDLINE | ID: mdl-37742071

ABSTRACT

Alzheimer disease (AD) is the most common type of dementia and is estimated to affect 6 million Americans. Risk for AD is multifactorial, including both genetic and environmental risk factors. AD genomic research has generally focused on identification of risk variants. Using this information, polygenic risk scores (PRSs) can be calculated to quantify an individual's relative disease risk due to genetic factors. The Amish are a founder population descended from German and Swiss Anabaptist immigrants. They experienced a genetic bottleneck after arrival in the United States, making their genetic architecture different from the broader European ancestry population. Prior work has demonstrated the lack of transferability of PRSs across populations. Here, we compared the performance of PRSs derived from genome-wide association studies (GWASs) of Amish individuals to those derived from a large European ancestry GWAS. Participants were screened for cognitive impairment with further evaluation for AD. Genotype data were imputed after collection via Illumina genotyping arrays. The Amish individuals were split into two groups based on the primary site of recruitment. For each group, GWAS was conducted with account for relatedness and adjustment for covariates. PRSs were then calculated using weights from the other Amish group. PRS models were evaluated with and without covariates. The Amish-derived PRSs distinguished between dementia status better than the European-derived PRS in our Amish populations and demonstrated performance improvements despite a smaller training sample size. This work highlighted considerations for AD PRS usage in populations that cannot be adequately described by basic race/ethnicity or ancestry classifications.


Subject(s)
Alzheimer Disease , Humans , United States , Alzheimer Disease/epidemiology , Genetic Risk Score , Genome-Wide Association Study , Risk Factors , Amish
2.
Immunohorizons ; 7(8): 600-610, 2023 08 01.
Article in English | MEDLINE | ID: mdl-37639224

ABSTRACT

It is indeed a privilege to be an immunologist in what is arguably the golden age of immunology. From astounding advances in fundamental knowledge to groundbreaking immunotherapeutic offerings, immunology has carved out an enviable niche for itself in basic science and clinical medicine. The need and the vital importance of appropriate education, training, and certification in clinical immunology was recognized by the World Health Organization as far back as 1972. In the United States, Ph.D. scientists with board certification in medical laboratory immunology have served as directors of high-complexity Clinical Laboratory Improvement Amendments- and College of American Pathologists-certified clinical immunology laboratories since 1977. From 1977 to 2017, board certification for medical laboratory immunology was administered by the American Society for Microbiology through the American Board of Medical Laboratory Immunology examination. The American Board of Medical Laboratory Immunology examination was phased out in 2017, and in the fall of 2019, the American Society for Clinical Pathology (ASCP) Board of Certification (BOC) examination committee took on the responsibility of developing a new doctoral-level certification examination for medical laboratory immunology. This transition to the ASCP BOC represents a well-deserved and much-needed recognition of the rapid advances in and the highly specialized nature of medical laboratory immunology and its ever-increasing relevance to patient care. This new ASCP BOC certification is called the Diplomate in Medical Laboratory Immunology, and, as of April 1, 2023, it is now available to potential examinees. In this report, we describe the examination, eligibility routes, and potential career pathways for successful diplomates.


Subject(s)
Certification , Laboratories , Humans
3.
Alzheimer Dis Assoc Disord ; 37(3): 195-199, 2023.
Article in English | MEDLINE | ID: mdl-37561946

ABSTRACT

BACKGROUND: Verbal and visuospatial memory impairments are common to Alzheimer disease and Related Dementias (ADRD), but the patterns of decline in these domains may reflect genetic and lifestyle influences. The latter may be pertinent to populations such as the Amish who have unique lifestyle experiences. METHODS: Our data set included 420 Amish and 401 CERAD individuals. Sex-adjusted, age-adjusted, and education-adjusted Z-scores were calculated for the recall portions of the Constructional Praxis Delay (CPD) and Word List Delay (WLD). ANOVAs were then used to examine the main and interaction effects of cohort (Amish, CERAD), cognitive status (case, control), and sex on CPD and WLD Z-scores. RESULTS: The Amish performed better on the CPD than the CERAD cohort. In addition, the difference between cases and controls on the CPD and WLD were smaller in the Amish and Amish female cases performed better on the WLD than the CERAD female cases. DISCUSSION: The Amish performed better on the CPD task, and ADRD-related declines in CPD and WLD were less severe in the Amish. In addition, Amish females with ADRD may have preferential preservation of WLD. This study provides evidence that the Amish exhibit distinct patterns of verbal and visuospatial memory loss associated with aging and ADRD.


Subject(s)
Alzheimer Disease , Humans , Female , Alzheimer Disease/genetics , Amish , Neuropsychological Tests , Memory , Mental Recall , Memory Disorders
4.
J Immunol Methods ; 519: 113485, 2023 08.
Article in English | MEDLINE | ID: mdl-37150477

ABSTRACT

B cells are a key component of the humoral (antibody-mediated) immune response which is responsible for defense against a variety of pathogens. Here we provide an overview of the current understanding of B cell development and function and briefly describe inborn errors of immunity associated with B cell development defects which can manifest as immune deficiency, malignancy, autoimmunity, or allergy. The knowledge and application of B cell biology are essential for laboratory evaluation and clinical assessment of these B cell disorders.


Subject(s)
Germinal Center , Immunity, Humoral , Humans , T-Lymphocytes, Helper-Inducer , B-Lymphocytes , Lymphocyte Activation
5.
Alzheimers Dement ; 19(2): 611-620, 2023 02.
Article in English | MEDLINE | ID: mdl-35490390

ABSTRACT

INTRODUCTION: Studies of cognitive impairment (CI) in Amish communities have identified sibships containing CI and cognitively unimpaired (CU) individuals. We hypothesize that CU individuals may carry protective alleles delaying age at onset (AAO) of CI. METHODS: A total of 1522 individuals screened for CI were genotyped. The outcome studied was AAO for CI individuals or age at last normal exam for CU individuals. Cox mixed-effects models examined association between age and single nucleotide variants (SNVs). RESULTS: Three SNVs were significantly associated (P < 5 × 10-8 ) with AAO on chromosomes 6 (rs14538074; hazard ratio [HR] = 3.35), 9 (rs534551495; HR = 2.82), and 17 (rs146729640; HR = 6.38). The chromosome 17 association was replicated in the independent National Institute on Aging Genetics Initiative for Late-Onset Alzheimer's Disease dataset. DISCUSSION: The replicated genome-wide significant association with AAO on chromosome 17 is located in the SHISA6 gene, which is involved in post-synaptic transmission in the hippocampus and is a biologically plausible candidate gene for Alzheimer's disease.


Subject(s)
Alzheimer Disease , Cognitive Dysfunction , Humans , Alzheimer Disease/genetics , Genome-Wide Association Study , Genotype , Cognitive Dysfunction/genetics , Polymorphism, Single Nucleotide
6.
medRxiv ; 2023 Dec 14.
Article in English | MEDLINE | ID: mdl-38168325

ABSTRACT

INTRODUCTION: Alzheimer disease (AD) remains a debilitating condition with limited treatments and additional therapeutic targets needed. Identifying AD protective genetic loci may identify new targets and accelerate identification of therapeutic treatments. We examined a founder population to identify loci associated with cognitive preservation into advanced age. METHODS: Genome-wide association and linkage analyses were performed on 946 examined and sampled Amish individuals, aged 76-95, who were either cognitively unimpaired (CU) or impaired (CI). RESULTS: 12 SNPs demonstrated suggestive association (P≤5×10-4) with cognitive preservation. Genetic linkage analyses identified >100 significant (LOD≥3.3) SNPs, some which overlapped with the association results. Only one locus on chromosome 2 retained significance across multiple analyses. DISCUSSION: A novel significant result for cognitive preservation on chromosome 2 includes the genes LRRTM4 and CTNNA2. Additionally, the lead SNP, rs1402906, impacts the POU3F2 transcription factor binding affinity, which regulates LRRTM4 and CTNNA2.

7.
J Clin Immunol ; 42(6): 1244-1253, 2022 08.
Article in English | MEDLINE | ID: mdl-35585372

ABSTRACT

BACKGROUND: Autosomal recessive (AR) PKCδ deficiency is a rare inborn error of immunity (IEI) characterized by autoimmunity and susceptibility to bacterial, fungal, and viral infections. PKCδ is involved in the intracellular production of reactive oxidative species (ROS). MATERIAL AND METHODS: We studied a 5-year old girl presenting with a history of Burkholderia cepacia infection. She had no history of autoimmunity, lymphocyte counts were normal, and no auto-antibodies were detected in her plasma. We performed a targeted panel analysis of 407 immunity-related genes and immunological investigations of the underlying genetic condition in this patient. RESULTS: Consistent with a history suggestive of chronic granulomatous disease (CGD), oxidative burst impairment was observed in the patient's circulating phagocytes in a dihydrorhodamine 123 (DHR) assay. However, targeted genetic panel analysis identified no candidate variants of known CGD-causing genes. Two heterozygous candidate variants were detected in PRKCD: c.285C > A (p.C95*) and c.376G > T (p.D126Y). The missense variant was also predicted to cause abnormal splicing, as it is located at the splice donor site of exon 5. TOPO-TA cloning confirmed that exon 5 was completely skipped, resulting in a truncated protein. No PKCδ protein was detected in the patient's neutrophils and monocyte-derived macrophages. The monocyte-derived macrophages of the patient produced abnormally low levels of ROS, as shown in an Amplex Red assay. CONCLUSION: PKCδ deficiency should be considered in young patients with CGD-like clinical manifestations and abnormal DHR assay results, even in the absence of clinical and biological manifestations of autoimmunity.


Subject(s)
Granulomatous Disease, Chronic , Child , Child, Preschool , Female , Granulomatous Disease, Chronic/diagnosis , Granulomatous Disease, Chronic/genetics , Granulomatous Disease, Chronic/metabolism , Humans , NADPH Oxidases/genetics , RNA Splice Sites , Reactive Oxygen Species , Respiratory Burst
8.
HGG Adv ; 3(3): 100114, 2022 Jul 14.
Article in English | MEDLINE | ID: mdl-35599847

ABSTRACT

Alzheimer disease (AD) is the most common type of dementia and is currently estimated to affect 6.2 million Americans. It ranks as the sixth leading cause of death in the United States, and the proportion of deaths due to AD has been increasing since 2000, while the proportion of many other leading causes of deaths have decreased or remained constant. The risk for AD is multifactorial, including genetic and environmental risk factors. Although APOE ε4 remains the largest genetic risk factor for AD, more than 26 other loci have been associated with AD risk. Here, we recruited Amish adults from Ohio and Indiana to investigate AD risk and protective genetic effects. As a founder population that typically practices endogamy, variants that are rare in the general population may be of a higher frequency in the Amish population. Since the Amish have a slightly lower incidence and later age of onset of disease, they represent an excellent and unique population for research on protective genetic variants. We compared AD risk in the Amish and to a non-Amish population through APOE genotype, a non-APOE genetic risk score of genome-wide significant variants, and a non-APOE polygenic risk score considering all of the variants. Our results highlight the lesser relative impact of APOE and differing genetic architecture of AD risk in the Amish compared to a non-Amish, general European ancestry population.

9.
J Allergy Clin Immunol Pract ; 9(9): 3293-3307.e6, 2021 09.
Article in English | MEDLINE | ID: mdl-34033983

ABSTRACT

Knowledge related to the biology of inborn errors of immunity and associated laboratory testing methods continues to expand at a tremendous rate. Despite this, many patients with inborn errors of immunity suffer for prolonged periods of time before identification of their underlying condition, thereby delaying appropriate care. Understanding that test selection and optimal evaluation for patients with recurrent infections or unusual patterns of inflammation can be unclear, we present a document that distills relevant clinical features of immunologic disease due to inborn errors of immunity and related appropriate and available test options. This document is intended to serve the practicing clinical immunologist and, in turn, patients by describing best available test options for initial and expanded immunologic evaluations across the disease spectrum. Our goal is to demystify the process of evaluating patients with suspected immune dysfunction and to enable more rapid and accurate diagnosis of such individuals.


Subject(s)
Laboratories , Primary Immunodeficiency Diseases , Humans , Inflammation , Motivation , Reinfection
10.
J Immunol Methods ; 492: 112994, 2021 05.
Article in English | MEDLINE | ID: mdl-33626382

ABSTRACT

The annual meeting of the Association of Medical Laboratory Immunologists (AMLI) was convened virtually over the month of August. Prior to the emergence of the COVID-19 pandemic, AMLI's scientific committee had chosen the following topics as the focus of its 2020 meeting: Histocompatibility Testing and Transplant Immunology; Secondary Immunodeficiency and Immunotherapy Monitoring; ANA Update; and Emerging Infectious Diseases and New Algorithms for Testing. Given the central role of the discipline in the evaluation of the host response to infection, it was apt to add a separate session on antibody testing for SARS-CoV-2 infections to the original program. The current report provides an overview of the subjects discussed in the course of this meeting.


Subject(s)
Allergy and Immunology , COVID-19/immunology , Immunotherapy/methods , SARS-CoV-2/physiology , Societies, Medical , Algorithms , Animals , Group Processes , Histocompatibility Testing , Host-Pathogen Interactions , Humans , Laboratories , Pandemics , SARS-CoV-2/chemistry , Transplantation Immunology , Virtual Reality
11.
Case Reports Immunol ; 2020: 8841571, 2020.
Article in English | MEDLINE | ID: mdl-32908732

ABSTRACT

X-linked lymphoproliferative disease (XLP1) is a rare primary immunodeficiency characterized by EBV-triggered immune dysregulation, lymphoproliferation, dysgammaglobulinemia, and lymphoma. Early childhood mortality from overwhelming inflammation is expected in most patients. The only curative therapy is hematopoietic stem cell transplant (HSCT); however, whether to perform HSCT on an asymptomatic patient remains debatable. This uncertainty arises because the natural history of XLP1 patients without transplantation is not clear. In this case report, we present the natural history of XLP1 in a 43-year-old male patient who did not receive HSCT. We also review the literature on untransplanted XLP1 patients who lived into mid-adulthood. Despite surviving childhood presentations that are typically fatal, we found that these rare patients remain susceptible to manifestations of XLP1 decades later.

12.
Front Pediatr ; 6: 390, 2018.
Article in English | MEDLINE | ID: mdl-30713837

ABSTRACT

Fanconi anemia (FA) is an inherited bone marrow failure and cancer predisposition disorder due to mutations in DNA repair pathways proteins (FANC). The dysfunctional proteins are unable to repair DNA breaks and cause genomic instability. Mutations in many of the 19 FANC genes are well characterized biochemically and clinically. Little is known about the FANCD2 gene which acts downstream of the FA-core proteins. Here we report a 11-year-old female previously diagnosed with FA and bone marrow failure. Gene sequencing demonstrated deletion of exons 2-18 and a pathologic missense mutation (c. 2444G>A, p. Arg815Gln) in FANCD2 (Chr3). Her medical history is significant for an episode of pneumococcal sepsis despite adequate vaccination. Repeated blood samples and immunophenotyping demonstrated severe lymphopenia. There were markedly low CD4+ T-cell counts with a low CD4:CD8 ratio. Changes in the composition of the B-cell population included significantly diminished absolute total B-cells, and decreased mature cells. There was no immunogenic response to vaccination against S. pneumoniae. The NK-cell count was unaffected and demonstrated normal spontaneous and stimulated cytotoxic response. Bone marrow analysis demonstrated hypocellularity without dysplasia. The clinical and laboratory features are suggestive of combined immune deficiency. FANCD2 may be involved in the transition of immature B and T cells to mature cells, a process that requires substantial DNA recombination not observed in NK cells. Additional genetic and biochemical evaluation is needed to further characterize the novel genetic and clinical findings.

13.
J Rheumatol ; 43(10): 1816-1824, 2016 10.
Article in English | MEDLINE | ID: mdl-27481902

ABSTRACT

OBJECTIVE: To determine the autoantibody repertoire and clinical associations in a multiethnic cohort of American patients with systemic sclerosis (SSc). METHODS: There were 1000 patients with SSc (196 Hispanic, 228 African American, 555 white, and 21 other) who were screened for antinuclear antibodies (ANA), including anticentromere antibodies (ACA) by indirect immunofluorescence assay, antitopoisomerase-1 (topo-1/Scl-70) by immunodiffusion, and anti-RNA polymerase III (RNAP III) by ELISA. Sera from 160 patients with mainly nucleolar and/or speckled ANA pattern, but negative for ACA, Scl-70, and RNAP III, were further characterized by immunoprecipitation for SSc-specific antibodies. RESULTS: The prevalence of antibodies against RNAP III, Th/To, and PM/Scl did not differ significantly among the ethnic groups. The frequency of anti-Scl-70 was lowest in whites (18.0%) compared with 24.0% and 26.8% in Hispanics and African Americans (p = 0.01), respectively. Compared with African American patients, Hispanic and white subjects had a higher frequency of ACA (p < 0.0001) and lower frequency of U3-RNP (p < 0.0001). U3-RNP antibodies were uniquely higher in African American patients, independent of clinical subset, while Th/To autoantibodies were associated with limited cutaneous SSc in white subjects. Overall, Hispanic and African American patients had an earlier age of onset and a predominance of diffuse cutaneous SSc compared with their white counterparts. CONCLUSION: SSc-specific antibodies may predict disease subset; however, the hierarchy of their prevalence differs across ethnic groups. This study provides the most extensive analysis to date on the relevance of autoantibodies in the diagnosis and clinical manifestations of SSc in Hispanic American patients.


Subject(s)
Autoantibodies/blood , Scleroderma, Systemic/immunology , Adult , Black or African American , Female , Hispanic or Latino , Humans , Male , Middle Aged , Scleroderma, Systemic/blood , Scleroderma, Systemic/ethnology , Seroepidemiologic Studies , United States , White People
14.
Nat Immunol ; 17(3): 304-14, 2016 Mar.
Article in English | MEDLINE | ID: mdl-26829766

ABSTRACT

The role of anergy, an acquired state of T cell functional unresponsiveness, in natural peripheral tolerance remains unclear. In this study, we found that anergy was selectively induced in fetal antigen-specific maternal CD4(+) T cells during pregnancy. A naturally occurring subpopulation of anergic polyclonal CD4(+) T cells, enriched for self antigen-specific T cell antigen receptors, was also present in healthy hosts. Neuropilin-1 expression in anergic conventional CD4(+) T cells was associated with hypomethylation of genes related to thymic regulatory T cells (Treg cells), and this correlated with their ability to differentiate into Foxp3(+) Treg cells that suppressed immunopathology. Thus, our data suggest that not only is anergy induction important in preventing autoimmunity but also it generates the precursors for peripheral Treg cell differentiation.


Subject(s)
Autoimmunity/immunology , Cell Differentiation/immunology , Clonal Anergy/immunology , Histocompatibility, Maternal-Fetal/immunology , Peripheral Tolerance/immunology , Precursor Cells, T-Lymphoid/immunology , T-Lymphocytes, Regulatory/immunology , Adoptive Transfer , Animals , Arthritis, Experimental/immunology , CD4-Positive T-Lymphocytes/immunology , Cell Proliferation , Cytokines/immunology , Enzyme-Linked Immunosorbent Assay , Female , Flow Cytometry , Forkhead Transcription Factors/immunology , Genes, T-Cell Receptor alpha , Immunoblotting , Male , Mice , Mice, Knockout , Neuropilin-1/metabolism , Pregnancy , Receptors, Antigen, T-Cell/immunology , Reverse Transcriptase Polymerase Chain Reaction , Self Tolerance , Thymocytes/immunology
15.
Clin Vaccine Immunol ; 20(4): 447-51, 2013 Apr.
Article in English | MEDLINE | ID: mdl-23365209

ABSTRACT

Celiac disease (CD) is an autoimmune disorder that occurs in genetically susceptible individuals of all ages and is triggered by immune response to gluten and related proteins. The disease is characterized by the presence of HLA-DQ2 and/or -DQ8 haplotypes, diverse clinical manifestations, gluten-sensitive enteropathy, and production of several autoantibodies of which endomysial, tissue transglutaminase, and deamidated gliadin peptide antibodies are considered specific. Although antireticulin antibodies (ARA) have historically been used in the evaluation of CD, these assays lack optimal sensitivities and specificities for routine diagnostic use. This minireview highlights the advances in CD-specific serologic testing and the rationale for eliminating ARA from CD evaluation consistent with recommendations for diagnosis.


Subject(s)
Autoantibodies/blood , Celiac Disease/diagnosis , Mass Screening/methods , Reticulin/immunology , GTP-Binding Proteins/immunology , Gliadin/immunology , Humans , Protein Glutamine gamma Glutamyltransferase 2 , Serologic Tests/methods , Transglutaminases/immunology
16.
J Immunol ; 188(1): 170-81, 2012 Jan 01.
Article in English | MEDLINE | ID: mdl-22124124

ABSTRACT

Rheumatoid arthritis develops in association with a defect in peripheral CD4(+) T cell homeostasis. T cell lymphopenia has also been shown to be a barrier to CD4(+) T cell clonal anergy induction. We therefore explored the relationship between clonal anergy induction and the avoidance of autoimmune arthritis by tracking the fate of glucose-6-phosphate isomerase (GPI)-reactive CD4(+) T cells in the setting of selective T cell lymphopenia. CD4(+) T cell recognition of self-GPI peptide/MHC class II complexes in normal murine hosts did not lead to arthritis and instead caused those T cells to develop a Folate receptor 4(hi)CD73(hi) anergic phenotype. In contrast, hosts selectively depleted of polyclonal Foxp3(+)CD4(+) regulatory T cells could not make GPI-specific CD4(+) T cells anergic and failed to control arthritis. This suggests that autoimmune arthritis develops in the setting of lymphopenia when Foxp3(+)CD4(+) regulatory T cells are insufficient to functionally inactivate all autoreactive CD4(+) T cells that encounter self-Ag.


Subject(s)
Antigens, CD/immunology , Antigens, Neoplasm/immunology , Arthritis, Rheumatoid/immunology , Clonal Anergy/immunology , Receptors, Cell Surface/immunology , T-Lymphocytes, Regulatory/immunology , Tetraspanins/immunology , Animals , Antigens, CD/genetics , Antigens, Neoplasm/genetics , Arthritis, Rheumatoid/genetics , Clonal Anergy/genetics , Glucose-6-Phosphate Isomerase/genetics , Glucose-6-Phosphate Isomerase/immunology , Lymphopenia/genetics , Lymphopenia/immunology , Mice , Mice, Transgenic , Receptors, Cell Surface/genetics , T-Lymphocytes, Regulatory/pathology , Tetraspanins/genetics
17.
J Immunol ; 183(3): 1695-704, 2009 Aug 01.
Article in English | MEDLINE | ID: mdl-19592655

ABSTRACT

A third signal that can be provided by IL-12 or type I IFN is required for differentiation of naive CD8 T cells responding to Ag and costimulation. The cytokines program development of function and memory within 3 days of initial stimulation, and we show here that programming involves regulation of a common set of approximately 355 genes including T-bet and eomesodermin. Much of the gene regulation program is initiated in response to Ag and costimulation within 24 h but is then extinguished unless a cytokine signal is available. Histone deacetylase inhibitors mimic the effects of IL-12 or type I IFN signaling, indicating that the cytokines relieve repression and allow continued gene expression by promoting increased histone acetylation. In support of this, increased association of acetylated histones with the promoter loci of granzyme B and eomesodermin is shown to occur in response to IL-12, IFN-alpha, or histone deacetylase inhibitors. Thus, IL-12 and IFN-alpha/beta enforce in common a complex gene regulation program that involves, at least in part, chromatin remodeling to allow sustained expression of a large number of genes critical for CD8 T cell function and memory.


Subject(s)
CD8-Positive T-Lymphocytes/immunology , Chromatin Assembly and Disassembly/immunology , Gene Expression Regulation/immunology , Immunologic Memory/genetics , Interferon Type I/physiology , Interleukin-12/physiology , Acetylation , Animals , Antigen Presentation , Cell Differentiation , Histones/metabolism , Mice , T-Box Domain Proteins/genetics
18.
J Immunol ; 177(1): 401-13, 2006 Jul 01.
Article in English | MEDLINE | ID: mdl-16785536

ABSTRACT

During Ag stimulation of T cells, the recognition of B7 molecules by the CD28 costimulatory receptor increases the level of c-Fos, a component of the AP-1 transactivator known to bind the 5' Il2 gene enhancer. In this study, we show that the costimulation of Fos transcription by CD28 is associated with increased binding of p300/CREB-binding protein (CBP) molecules at the Fos promoter, and is blocked by an adenoviral E1A molecular antagonist of p300/CBP. Furthermore, transcriptional activation by a C-terminal domain of CBP is strengthened when CD28 molecules are actively signaling. This increased amount and activity of p300/CBP molecules at the Fos gene correlated with higher histone H4 acetylation and RNA polymerase II association with the promoter. These data suggest a global mechanism whereby CD28 signaling influences the rate and intensity of new gene expression during Ag recognition via direct control over the coactivator function of p300/CBP.


Subject(s)
CD28 Antigens/metabolism , CREB-Binding Protein/physiology , Transcriptional Activation/immunology , p300-CBP Transcription Factors/physiology , Acetylation , Animals , CD28 Antigens/physiology , CD4-Positive T-Lymphocytes/immunology , CD4-Positive T-Lymphocytes/metabolism , CREB-Binding Protein/metabolism , Cells, Cultured , Histones/metabolism , Humans , Jurkat Cells , Lymphocyte Activation/genetics , Mice , Mice, Inbred BALB C , Mice, Transgenic , Phosphorylation , Promoter Regions, Genetic , Protein Transport/genetics , Protein Transport/immunology , Proto-Oncogene Proteins c-fos/biosynthesis , Proto-Oncogene Proteins c-fos/genetics , RNA Polymerase II/metabolism , Serine/metabolism , Signal Transduction/immunology , ets-Domain Protein Elk-1/metabolism , p300-CBP Transcription Factors/metabolism
19.
J Immunol ; 176(10): 5880-9, 2006 May 15.
Article in English | MEDLINE | ID: mdl-16670295

ABSTRACT

T cell clonal anergy induction in lymphopenic nu/nu mice was found to be ineffective. Exposure to a tolerizing peptide Ag regimen instead induced aggressive CD4(+) cell cycle progression and increased Ag responsiveness (priming). Reconstitution of T cell-deficient mice by an adoptive transfer of mature peripheral lymphocytes was accompanied by the development of a CD25(+)Foxp3(+)CTLA-4(+)CD4(+) regulatory T cell population that acted to dampen Ag-driven cell cycle progression and facilitate the induction of clonal anergy in nearby responder CD25(-)CD4(+) T cells. Thus, an early recovery of CD25(+) regulatory T cells following a lymphopenic event can prevent exuberant Ag-stimulated CD4(+) cell cycle progression and promote the development of clonal anergy.


Subject(s)
CD4-Positive T-Lymphocytes/immunology , Clonal Anergy/immunology , Forkhead Transcription Factors/biosynthesis , Lymphopenia/immunology , Receptors, Interleukin-2/biosynthesis , T-Lymphocytes, Regulatory/physiology , Adoptive Transfer , Animals , CD4-Positive T-Lymphocytes/metabolism , CD4-Positive T-Lymphocytes/pathology , CD4-Positive T-Lymphocytes/transplantation , Cell Proliferation , Cells, Cultured , Clonal Anergy/genetics , Lymphopenia/genetics , Mice , Mice, Transgenic , T-Lymphocytes, Regulatory/immunology
SELECTION OF CITATIONS
SEARCH DETAIL
...