Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Neural Comput Appl ; 28(Suppl 1): 565-572, 2017.
Article in English | MEDLINE | ID: mdl-29213188

ABSTRACT

Abnormal activity detection plays a crucial role in surveillance applications, and a surveillance system that can perform robustly in an academic environment has become an urgent need. In this paper, we propose a novel framework for an automatic real-time video-based surveillance system which can simultaneously perform the tracking, semantic scene learning, and abnormality detection in an academic environment. To develop our system, we have divided the work into three phases: preprocessing phase, abnormal human activity detection phase, and content-based image retrieval phase. For motion object detection, we used the temporal-differencing algorithm and then located the motions region using the Gaussian function. Furthermore, the shape model based on OMEGA equation was used as a filter for the detected objects (i.e., human and non-human). For object activities analysis, we evaluated and analyzed the human activities of the detected objects. We classified the human activities into two groups: normal activities and abnormal activities based on the support vector machine. The machine then provides an automatic warning in case of abnormal human activities. It also embeds a method to retrieve the detected object from the database for object recognition and identification using content-based image retrieval. Finally, a software-based simulation using MATLAB was performed and the results of the conducted experiments showed an excellent surveillance system that can simultaneously perform the tracking, semantic scene learning, and abnormality detection in an academic environment with no human intervention.

2.
Int J Data Min Bioinform ; 7(4): 397-415, 2013.
Article in English | MEDLINE | ID: mdl-23798224

ABSTRACT

Protein contact map is a simplified representation of a protein's spatial structure. The Committee Machine is a machine learning method that allots the learning task to a number of learners and divides the input space into subspaces. Learners' responses to an input are combined to produce the system's final response, which is more accurate than any single individual's response. In this study, we propose a novel method called CMP_model, for contact map prediction based on the committee machine. The results of the proposed model in comparison with two other models, show considerable gain (an accuracy improvement from 0.05 to 0.15).


Subject(s)
Artificial Intelligence , Protein Interaction Maps , Proteins/chemistry , Binding Sites , Models, Molecular , Protein Conformation , Protein Folding
SELECTION OF CITATIONS
SEARCH DETAIL
...