Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 46
Filter
Add more filters










Publication year range
1.
Foods ; 13(9)2024 May 04.
Article in English | MEDLINE | ID: mdl-38731785

ABSTRACT

The winemaking process generates an annual global production of about 10 million tons of waste consisting of stalks, skin, and seeds. The possible reutilization of wine pomace is strictly linked to its chemical composition. In this preliminary study, three different Sardinian white grapes (Malvasia, Vermentino and Nasco) grown in the same area were evaluated through a whole wine production chain. To reduce environmental impact, all the grapes were treated following the integrated production practice (IPP) strategies. The adopted agronomic methods and the main physico-chemical parameters of the fresh fruits and musts were evaluated. A fully qualitative and quantitative characterization of the phenolic fraction of the pomace extracts was performed by HPLC-DAD after a post-winemaking process. Water and ethanol were utilized as green solvents in the extraction process. Additionally, the entire pomace post-winemaking process was carried out within the winery facilities to reduce energy loss and road transportation. The findings demonstrated that large amounts of beneficial polyphenols are present in pomace extracts, and that the type of grape used, agronomic practices, and winemaking method all influence the quantity and quality of the extracts. The polyphenol concentrations in the Vermentino (28,391.5 ± 7.0 mg/kg) and Malvasia pomace (11,316.3 ± 6.5 mg/kg) were found to be the highest and lowest, respectively.

2.
Int J Mol Sci ; 25(9)2024 Apr 26.
Article in English | MEDLINE | ID: mdl-38731954

ABSTRACT

Natural products have many healing effects on the skin with minimal or no adverse effects. In this study, we analyzed the regenerative properties of a waste product (hydrolate) derived from Helichrysum italicum (HH) on scratch-tested skin cell populations seeded on a fluidic culture system. Helichrysum italicum has always been recognized in the traditional medicine of Mediterranean countries for its wide pharmacological activities. We recreated skin physiology with a bioreactor that mimics skin stem cell (SSCs) and fibroblast (HFF1) communication as in vivo skin layers. Dynamic culture models represent an essential instrument for recreating and preserving the complex multicellular organization and interactions of the cellular microenvironment. Both cell types were exposed to two different concentrations of HH after the scratch assay and were compared to untreated control cells. Collagen is the constituent of many wound care products that act directly on the damaged wound environment. We analyzed the role played by HH in stimulating collagen production during tissue repair, both in static and dynamic culture conditions, by a confocal microscopic analysis. In addition, we performed a gene expression analysis that revealed the activation of a molecular program of stemness in treated skin stem cells. Altogether, our results indicate a future translational application of this natural extract to support skin regeneration and define a new protocol to recreate a dynamic process of healing.


Subject(s)
Collagen , Helichrysum , Plant Extracts , Regeneration , Skin , Wound Healing , Wound Healing/drug effects , Collagen/metabolism , Humans , Skin/metabolism , Skin/drug effects , Helichrysum/chemistry , Plant Extracts/pharmacology , Regeneration/drug effects , Fibroblasts/metabolism , Fibroblasts/drug effects , Stem Cells/metabolism , Stem Cells/drug effects , Stem Cells/cytology , Cells, Cultured
3.
Viruses ; 16(5)2024 04 24.
Article in English | MEDLINE | ID: mdl-38793547

ABSTRACT

Severe acute respiratory syndrome-related Coronavirus 2 (SARS-CoV-2) has infected more than 762 million people to date and has caused approximately 7 million deaths all around the world, involving more than 187 countries. Although currently available vaccines show high efficacy in preventing severe respiratory complications in infected patients, the high number of mutations in the S proteins of the current variants is responsible for the high level of immune evasion and transmissibility of the virus and the reduced effectiveness of acquired immunity. In this scenario, the development of safe and effective drugs of synthetic or natural origin to suppress viral replication and treat acute forms of COVID-19 remains a valid therapeutic challenge. Given the successful history of flavonoids-based drug discovery, we developed esters of substituted cinnamic acids with quercetin to evaluate their in vitro activity against a broad spectrum of Coronaviruses. Interestingly, two derivatives, the 3,4-methylenedioxy 6 and the ester of acid 7, have proved to be effective in reducing OC43-induced cytopathogenicity, showing interesting EC50s profiles. The ester of synaptic acid 7 in particular, which is not endowed with relevant cytotoxicity under any of the tested conditions, turned out to be active against OC43 and SARS-CoV-2, showing a promising EC50. Therefore, said compound was selected as the lead object of further analysis. When tested in a yield reduction, assay 7 produced a significant dose-dependent reduction in viral titer. However, the compound was not virucidal, as exposure to high concentrations of it did not affect viral infectivity, nor did it affect hCoV-OC43 penetration into pre-treated host cells. Additional studies on the action mechanism have suggested that our derivative may inhibit viral endocytosis by reducing viral attachment to host cells.


Subject(s)
Antiviral Agents , Cinnamates , Esters , Quercetin , SARS-CoV-2 , Virus Replication , Antiviral Agents/pharmacology , Antiviral Agents/chemistry , Quercetin/pharmacology , Quercetin/chemistry , Quercetin/analogs & derivatives , Cinnamates/pharmacology , Cinnamates/chemistry , Esters/pharmacology , Esters/chemistry , Humans , SARS-CoV-2/drug effects , Virus Replication/drug effects , Animals , COVID-19 Drug Treatment , Chlorocebus aethiops , Vero Cells , COVID-19/virology , Cell Line
4.
Plants (Basel) ; 11(12)2022 Jun 15.
Article in English | MEDLINE | ID: mdl-35736728

ABSTRACT

Vaginal infections affect millions of women annually worldwide. Therapeutic options are limited, moreover drug-resistance increases the need to find novel antimicrobials for health promotion. Recently phytochemicals were re-discovered for medical treatment. Myrtle (Myrtus communis L.) plant extracts showed in vitro antioxidant, antiseptic and anti-inflammatory properties thanks to their bioactive compounds. The aim of the present study was to create novel nanodevices to deliver three natural extracts from leaves, seeds and fruit of myrtle, in vaginal milieu. We explored their effect on human cells (HeLa, Human Foreskin Fibroblast-1 line, and stem cells isolated from skin), resident microflora (Lactobacillus acidophilus) and on several vaginal pathogens (Trichomonas vaginalis, Escherichia coli, Staphylococcus aureus, Candida albicans, Candida kefyr, Candida glabrata, Candida parapsilosis, Candida krusei). Polycaprolactone-Gelatin nanofibers encapsulated with leaves extract and soaked with seed extracts exhibited a different capability in regard to counteracting microbial proliferation. Moreover, these nanodevices do not affect human cells and resident microflora viability. Results reveal that some of the tested nanofibers are interesting candidates for future vaginal infection treatments.

5.
Foods ; 11(3)2022 Jan 28.
Article in English | MEDLINE | ID: mdl-35159533

ABSTRACT

Potato is a staple food crop and an important source of dietary energy. Its tubers contain several essential amino acids, vitamins, minerals and phytochemicals that contribute to the nutritional value of this important product. Recently, scientific interest has focused on purple and red potatoes that, due to the presence of anthocyanins, may be considered as natural powerful functional food. The aim of this study was to evaluate the characteristics of pigmented varieties, the types of anthocyanins accumulated and the level of both beneficial phytochemicals (vitamin C and chlorogenic acids, CGAs) and anti-nutritional compounds (glycoalkaloids) following various cooking methods. The analyses described the presence of a mix of several acylated anthocyanins in pigmented tubers along with high level of CGA. The amount of antioxidants was differently affected by heat treatments according to the type of molecule and the cooking methods used. In some cases, the beneficial compounds were made more available by heat treatments for the analytical detection as compared to raw materials. Data reported here describe both the agronomic properties of these pigmented varieties and the effects of food processing methods on bioactive molecules contained in this natural functional food. They may provide useful information for breeders aiming to develop new varieties that could include desirable agronomical and industrial processing traits.

6.
Foods ; 11(2)2022 Jan 09.
Article in English | MEDLINE | ID: mdl-35053896

ABSTRACT

Swordfish is the most widespread billfish in the aquatic environment. The industrial processing of swordfish fillets involves salting, drying, and smoking steps. Salting techniques, dry or wet, are the most common method of fish preservation. This work evaluated salt diffusion in swordfish fillets after traditional dry salting and wet industrial injection salting methods. The data obtained from the dry salting studies highlighted that the salt diffusion process in swordfish meat was an unfavorable process depending on the contact time with the salt/meat. Moreover, irregularly shaped fillets negatively affected the salt migration in the different areas, leading to inhomogeneous and possibly unsafe final products. On the contrary, wet injection salting was suitable for processing swordfish fillets. As a result, the final products had a homogeneous salt concentration, maintained the organoleptic characteristics and health benefits for a long period, and achieved a longer shelf-life. Furthermore, the water activity (aw) values detected for the different processed fillets confirmed the physicochemical features of the final products and allow the classification of safe products. Moreover, injection salting is a quick process compatible with industrial production times.

7.
Cells ; 10(6)2021 06 07.
Article in English | MEDLINE | ID: mdl-34200247

ABSTRACT

Tissue homeostasis mainly depends on the activity of stem cells to replace damaged elements and restore tissue functions. Within this context, mesenchymal stem cells and fibroblasts are essential for maintaining tissue homeostasis in skin, in particular in the dermis. Modifications in collagen fibers are able to affect stem cell features. Skin properties can be significantly reduced after injuries or with aging, and stem cell niches, mainly comprising extracellular matrix (ECM), may be compromised. To this end, specific molecules can be administrated to prevent the aging process induced by UV exposure in the attempt to maintain a youngness phenotype. NanoPCL-M is a novel nanodevice able to control delivery of Mediterranean plant myrtle (Myrtus communis L.) extracts. In particular, we previously described that myrtle extracts, rich in bioactive molecules and nutraceuticals, were able to counteract senescence in adipose derived stem cells. In this study, we analyzed the effect of NanoPCL-M on skin stem cells (SSCs) and dermal fibroblasts in a dynamic cell culture model in order to prevent the effects of UV-induced senescence on proliferation and collagen depot. The BrdU assay results highlight the significantly positive effect of NanoPCL-M on the proliferation of both fibroblasts and SSCs. Our results demonstrate that-M is able to preserve SSCs features and collagen depot after UV-induced senescence, suggesting their capability to retain a young phenotype.


Subject(s)
Adipose Tissue/metabolism , Cellular Senescence/drug effects , Myrtus/chemistry , Nanofibers/chemistry , Phytochemicals , Plant Extracts , Stem Cells/metabolism , Fibroblasts/metabolism , Humans , Phytochemicals/chemistry , Phytochemicals/pharmacology , Plant Extracts/chemistry , Plant Extracts/pharmacology
8.
J Sci Food Agric ; 101(10): 4229-4240, 2021 Aug 15.
Article in English | MEDLINE | ID: mdl-33426638

ABSTRACT

BACKGROUND: In the postharvest handling of horticultural commodities, plant extracts with fungicidal activity are a valid alternative to synthetic fungicides. The fungicidal activity of myrtle leaf extracts from eight cultivars was studied in vitro against Penicillium digitatum, Penicillium italicum, and Penicillium expansum and on artificially inoculated mandarins with green and blue molds during storage for 12 days at 20 °C and 90% RH. RESULTS: Hydroxybenzoic acids, hydrolysable tannins, and flavonols were identified by high-performance liquid chromatography (HPLC). Despite sharing the same phenolic profile, extracts of eight myrtle cultivars significantly differed in the concentration of phenolics. Hydrolysable tannins are the principal subclass representing nearly 44.9% of the total polyphenols, whereas myricitrin was the most abundant flavonol in all cultivars. Myrtle extracts strongly inhibited conidial germination of the pathogens tested, although the greatest efficacy was observed against P. digitatum. At a concentration of 20 g L-1 , all the extracts completely inhibited fungi growth; only 'Angela', 'Tonina' and 'Grazia' extracts were effective at lower concentrations (15 g L-1 ). On inoculated fruit, myrtle extracts significantly controlled rot development. As a preventive treatment, 'Ilaria' and 'Maria Rita' extracts significantly reduced the rate of fruit with green mold decay lesions. When applied as a curative treatment, all the exacts decreased the incidence of decay. Against P. italicum, all the extracts applied as preventive treatments controlled decay effectively, while as curative treatment some of the extracts were not effective. All the extracts reduced the size of the infected areas. CONCLUSION: The results propose myrtle extracts as a possible natural alternative to synthetic fungicides. © 2021 Society of Chemical Industry.


Subject(s)
Citrus/microbiology , Food Preservation/methods , Food Preservatives/pharmacology , Fungicides, Industrial/pharmacology , Myrtus/chemistry , Penicillium/drug effects , Plant Diseases/prevention & control , Plant Extracts/pharmacology , Food Preservation/instrumentation , Food Preservatives/chemistry , Food Storage , Fruit/microbiology , Penicillium/classification , Penicillium/growth & development , Plant Diseases/microbiology , Plant Extracts/chemistry , Plant Leaves/chemistry
9.
Cells ; 9(12)2020 11 24.
Article in English | MEDLINE | ID: mdl-33255167

ABSTRACT

Natural cosmetic products have recently re-emerged as a novel tool able to counteract skin aging and skin related damages. In addition, recently achieved progress in nanomedicine opens a novel approach yielding from combination of modern nanotechnology with traditional treatment for innovative pharmacotherapeutics. In the present study, we investigated the antiaging effect of a pretreatment with Myrtus communis natural extract combined with a polycaprolactone nanofibrous scaffold (NanoPCL-M) on skin cell populations exposed to UV. We set up a novel model of skin on a bioreactor mimicking a crosstalk between keratinocytes, stem cells and fibroblasts, as in skin. Beta-galactosidase assay, indicating the amount of senescent cells, and viability assay, revealed that fibroblasts and stem cells pretreated with NanoPCL-M and then exposed to UV are superimposable to control cells, untreated and unexposed to UV damage. On the other hand, cells only exposed to UV stress, without NanoPCL-M pretreatment, exhibited a significantly higher yield of senescent elements. Keratinocyte-based 3D structures appeared disjointed after UV-stress, as compared to NanoPCL-M pretreated samples. Gene expression analysis performed on different senescence associated genes, revealed the activation of a molecular program of rejuvenation in stem cells pretreated with NanoPCL-M and then exposed to UV. Altogether, our results highlight a future translational application of NanoPCL-M to prevent skin aging.


Subject(s)
Cellular Senescence/drug effects , Nanofibers/chemistry , Plant Extracts/pharmacology , Skin/drug effects , Cell Proliferation/drug effects , Cells, Cultured , Fibroblasts/drug effects , Gene Expression/drug effects , Humans , Keratinocytes/drug effects , Myrtus/chemistry , Polyesters/chemistry , Skin Aging/drug effects , Stem Cells/drug effects , Ultraviolet Rays/adverse effects
10.
Sci Rep ; 10(1): 14184, 2020 08 25.
Article in English | MEDLINE | ID: mdl-32843707

ABSTRACT

Pomace seed extract loaded vesicles were prepared as promising technological and green solution to exploit agri-food wastes and by-products, and develop high value-added products for human health. An antioxidant extract rich in bioactive compounds (epicatechins, catechin, gallic acid, quercetin and procynidins) was obtained from the seeds isolated from the pomace of Cannonau red grape cultivar. The extract was incorporated into phospholipid vesicles ad hoc formulated for intestinal delivery, by combining them, for the first time, whit a maltodextrin (Glucidex). Glucidex-transfersomes, glucidex-hyalurosomes and glucidex-hyalutransferomes were prepared, characterized and tested. Glucidex-liposomes were used as reference. All vesicles were small in size (~ 150 nm), homogeneously dispersed and negatively charged. Glucidex-transfersomes and especially glucidex-hyalutransfersomes disclosed an unexpected resistance to acidic pH and high ionic strength, as they maintained their physico-chemical properties (size and size distribution) after dilution at pH 1.2 simulating the harsh gastric conditions. Vesicles were highly biocompatible and able to counteract the oxidative damages induced in Caco-2 cells by using hydrogen peroxide. Moreover, they promoted the formation of Lactobacillus reuteri biofilm acting as prebiotic formulation. Overall results suggest the potential of glucidex-hyalutransfersomes as food supplements for the treatment of intestinal disorders.


Subject(s)
Antioxidants/isolation & purification , Green Chemistry Technology/methods , Limosilactobacillus reuteri , Nanostructures , Plant Extracts/chemistry , Prebiotics , Recycling , Seeds/chemistry , Vitis/chemistry , Waste Products , Biofilms/drug effects , Cell Line, Tumor , Colonic Neoplasms/pathology , Drug Carriers , Humans , Hyaluronic Acid , Hydrogen Peroxide/toxicity , Intestinal Diseases/prevention & control , Intestines/drug effects , Liposomes , Nanocapsules , Nanostructures/administration & dosage , Phospholipids , Plant Extracts/administration & dosage , Polysaccharides , Polysorbates , Prebiotics/administration & dosage
11.
Int J Med Sci ; 17(8): 1030-1042, 2020.
Article in English | MEDLINE | ID: mdl-32410832

ABSTRACT

Wound-healing is a dynamic skin reparative process that results in a sequence of events, including inflammation, proliferation, and migration of different cell types as fibroblasts. Fibroblasts play a crucial role in repairing processes, from the late inflammatory phase until the fully final epithelization of the injured tissue. Within this context, identifying tools able to implement cell proliferation and migration could improve tissue regeneration. Recently, plants species from all over the world are coming out as novel tools for therapeutic applications thanks to their phytochemicals, which have antioxidant properties and can promote wound healing. In this paper, we aimed at investigating antioxidant activity of waste extracts from different medicinal plants, endemic of the Mediterranean area, on fibroblast proliferation and wound healing. We determined the amount of total phenols and anti-oxidant activity by ABTS assay. We then evaluated the cytotoxicity of the compounds and the proliferative capabilities of fibroblasts by scratch assay. Our results showed that waste extracts retain antioxidant and regenerative properties, inducing tissue re-establishment after environmental stress exposure. Taken together, our findings suggest that waste material could be used in the future also in combinations to stimulate wound healing processes and antioxidant responses in damaged skin.


Subject(s)
Antioxidants/pharmacology , Fibroblasts/drug effects , Phytochemicals/pharmacology , Plants, Medicinal/chemistry , Re-Epithelialization/drug effects , Cell Movement/drug effects , Cell Proliferation/drug effects , Drug Synergism , Fibroblasts/physiology , Humans , Italy , Plant Extracts/isolation & purification , Re-Epithelialization/physiology , Skin/cytology , Technology, Pharmaceutical , Waste Products
12.
Org Lett ; 21(18): 7329-7332, 2019 09 20.
Article in English | MEDLINE | ID: mdl-31539929

ABSTRACT

A general strategy for the synthesis of indolyl cyclopropanecarbaldehydes and ketones via a Brønsted acid-catalyzed indole nucleophilic addition/ring-contraction reaction sequence has been exploited. The procedure leads to a wide panel of cyclopropyl carbonyl compounds in generally high yields with a broad substrate scope.

13.
Biomed Res Int ; 2019: 5641034, 2019.
Article in English | MEDLINE | ID: mdl-31309107

ABSTRACT

Nutraceuticals present in food are molecules able to exert biological activity for the prevention and treatment of various diseases, in form of pharmaceutical preparations, such as capsules, cream, or pills. Myrtus communis L. is a spontaneous Mediterranean evergreen shrub, widely known for the liqueur obtained from its berries rich in phytochemicals such as tannins and flavonoids. In the present study, we aimed to evaluate the properties of myrtle byproducts, residual of the industrial liqueur processing, in Adipose-derived stem cells (ADSCs) induced at oxidative stress by in vitro H2O2 treatment. Cells were exposed for 12-24 and 48h at treatment with extracts and then senescence-induced. ROS production was then determined. The real-time PCR was performed to evaluate the expression of inflammatory cytokines and sirtuin-dependent epigenetic changes, as well the modifications in terms of stem cell pluripotency. The ß-galactosidase assay was conducted to analyze stem cell senescence after treatment. Our results show that industrial myrtle byproducts retain a high antioxidant and antisenescence activity, protecting cells from oxidative stress damages. The results obtained suggest that residues from myrtle liqueur production could be used as resource in formulation of food supplements or pharmaceutical preparations with antioxidant, antiaging, and anti-inflammatory activity.


Subject(s)
Myrtus/chemistry , Oxidative Stress/drug effects , Plant Extracts/pharmacology , Stem Cells/drug effects , Anti-Inflammatory Agents/pharmacology , Antioxidants/pharmacology , Cytokines/metabolism , Female , Flavonoids/pharmacology , Humans , Inflammation/drug therapy , Inflammation/metabolism , Male , Middle Aged , Reactive Oxygen Species/metabolism , Stem Cells/metabolism , Tannins/pharmacology , beta-Galactosidase/metabolism
14.
Molecules ; 24(8)2019 Apr 17.
Article in English | MEDLINE | ID: mdl-30999678

ABSTRACT

Inflammatory response represents one of the main mechanisms of healing and tissue function restoration. On the other hand, chronic inflammation leads to excessive secretion of pro-inflammatory cytokines involved in the onset of several diseases. Oxidative stress condition may contribute in worsening inflammatory state fall, increasing reactive oxygen species (ROS) production and cytokines release. Polyphenols can counteract inflammation and oxidative stress, modulating the release of toxic molecules and interacting with physiological defenses, such as cytochromes p450 enzymes. In this paper, we aimed at evaluating the anti-inflammatory properties of different concentrations of Myrtus communis L. pulp and seeds extracts, derived from liquor industrial production, on human fibroblasts. We determined ROS production after oxidative stress induction by H2O2 treatment, and the gene expression of different proinflammatory cytokines. We also analyzed the expression of CYP3A4 and CYP27B1 genes, in order to evaluate the capability of Myrtus polyphenols to influence the metabolic regulation of other molecules, including drugs, ROS, and vitamin D. Our results showed that Myrtus extracts exert a synergic effect with vitamin D in reducing inflammation and ROS production, protecting cells from oxidative stress damages. Moreover, the extracts modulate CYPs expression, preventing chronic inflammation and suggesting their use in development of new therapeutic formulations.


Subject(s)
Anti-Inflammatory Agents , Antioxidants , Cytochrome P-450 Enzyme System/metabolism , Myrtus/chemistry , Polyphenols , Vitamin D , Anti-Inflammatory Agents/chemistry , Anti-Inflammatory Agents/pharmacokinetics , Anti-Inflammatory Agents/pharmacology , Antioxidants/chemistry , Antioxidants/pharmacokinetics , Antioxidants/pharmacology , Cell Line , Humans , Inflammation/drug therapy , Inflammation/metabolism , Inflammation/pathology , Oxidation-Reduction/drug effects , Oxidative Stress/drug effects , Polyphenols/chemistry , Polyphenols/pharmacokinetics , Polyphenols/pharmacology , Vitamin D/chemistry , Vitamin D/pharmacokinetics , Vitamin D/pharmacology
15.
Org Lett ; 20(23): 7699-7702, 2018 12 07.
Article in English | MEDLINE | ID: mdl-30422665

ABSTRACT

A unified protocol for the construction of 3-(2-bromoethyl)benzofurans and 2-(benzofuran-3-yl)ethylamines from bis[(trimethylsilyl)oxy]cyclobutene has been developed. This mild and facile strategy was applied for the synthesis of a series of 5-HT serotonin receptor agonists, underlining its potential for the syntheses of bioactive compounds and natural products.

16.
Chem Commun (Camb) ; 54(96): 13547-13550, 2018 Dec 14.
Article in English | MEDLINE | ID: mdl-30443650

ABSTRACT

A general strategy for the synthesis of arylthio cyclopropyl carbaldehydes and ketones via a Brønsted acid catalyzed arylthiol addition/ring contraction reaction sequence has been exploited. The procedure led to a wide panel of cyclopropyl carbaldehydes in generally high yields and with broad substrate scope. Mechanistic aspects and synthetic applications of this procedure were investigated.

17.
Medicines (Basel) ; 5(4)2018 Oct 14.
Article in English | MEDLINE | ID: mdl-30322189

ABSTRACT

Background: The nanoincorporation of the extract of Citrus limon (L.) Osbeck var. pompia into liposomes was aimed at improving its antioxidant and antibacterial effects. Methods: The extract of the rind of Citrus limon (L.) Osbeck var. pompia was obtained by maceration in ethanol, evaporation, and freeze-drying. The extract phytochemical fingerprint was obtained by HPLC and mass spectrometry, and it was determined that gallic acid, neohesperidin, eriocitrin, and neoeriocitrin were the most abundant components. The freeze-dried extract was loaded in liposomes, glycerosomes, and penetration-enhancer-containing vesicles prepared with propylene glycol (PG-PEVs). Results: Capability of the vesicles of improving efficacy of the extract in counteracting oxidative stress was studied in vitro in keratinocytes, along with antimicrobial activity against planktonic cultures of Streptococcus mutans, Lactobacillus acidophilus, and Streptococcus sanguinis. Conclusion: Results showed that the vesicles, especially glycerosomes and PG-PEVs, prevented oxidative damage and cell death, and inhibited bacterial proliferation.

19.
Org Biomol Chem ; 15(47): 10053-10063, 2017 Dec 06.
Article in English | MEDLINE | ID: mdl-29165478

ABSTRACT

The acid-promoted syntheses of 2-(benzyloxy)cyclobutanones and bis(benzyloxy)dioxatricyclo decanes were achieved starting from 2-hydroxycyclobutanone and variously functionalized benzyl alcohols. The reaction sequences afforded the desired products in good to high yields and in a solvent-dependent chemoselective fashion.

20.
Metabolites ; 7(3)2017 Jul 26.
Article in English | MEDLINE | ID: mdl-28933758

ABSTRACT

In this study, the metabolome of Ruditapes decussatus, an economically and ecologically important marine bivalve species widely distributed in the Mediterranean region, was characterized by using proton Nuclear Magnetic Resonance (¹H-NMR) spectroscopy. Significant seasonal variations in the content of carbohydrates and free amino acids were observed. The relative amounts of alanine and glycine were found to exhibit the same seasonal pattern as the temperature and salinity at the harvesting site. Several putative sex-specific biomarkers were also discovered. Substantial differences were found for alanine and glycine, whose relative amounts were higher in males, while acetoacetate, choline and phosphocholine were more abundant in female clams. These findings reveal novel insights into the baseline metabolism of the European clam and represent a step forward towards a comprehensive metabolic characterization of the species. Besides providing a holistic view on the prominent nutritional components, the characterization of the metabolome of this bivalve represents an important prerequisite for elucidating the underlying metabolic pathways behind the environment-organism interactions.

SELECTION OF CITATIONS
SEARCH DETAIL
...