Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Pathogens ; 11(8)2022 Aug 09.
Article in English | MEDLINE | ID: mdl-36015018

ABSTRACT

Trypanosoma cruzi, the causative agent of Chagas disease, faces changes in redox status and nutritional availability during its life cycle. However, the influence of oxygen fluctuation upon the biology of T. cruzi is unclear. The present work investigated the response of T. cruzi epimastigotes to hypoxia. The parasites showed an adaptation to the hypoxic condition, presenting an increase in proliferation and a reduction in metacyclogenesis. Additionally, parasites cultured in hypoxia produced more reactive oxygen species (ROS) compared to parasites cultured in normoxia. The analyses of the mitochondrial physiology demonstrated that hypoxic condition induced a decrease in both oxidative phosphorylation and mitochondrial membrane potential (ΔΨm) in epimastigotes. In spite of that, ATP levels of parasites cultivated in hypoxia increased. The hypoxic condition also increased the expression of the hexokinase and NADH fumarate reductase genes and reduced NAD(P)H, suggesting that this increase in ATP levels of hypoxia-challenged parasites was a consequence of increased glycolysis and fermentation pathways. Taken together, our results suggest that decreased oxygen levels trigger a shift in the bioenergetic metabolism of T. cruzi epimastigotes, favoring ROS production and fermentation to sustain ATP production, allowing the parasite to survive and proliferate in the insect vector.

2.
PLoS Negl Trop Dis ; 14(1): e0007945, 2020 01.
Article in English | MEDLINE | ID: mdl-31895927

ABSTRACT

Chagas disease, also known as American trypanosomiasis, is a potentially life-threatening illness caused by the protozoan parasite, Trypanosoma cruzi, and is transmitted by triatomine insects during its blood meal. Proliferative epimastigotes forms thrive inside the insects in the presence of heme (iron protoporphyrin IX), an abundant product of blood digestion, however little is known about the metabolic outcome of this signaling molecule in the parasite. Trypanosomatids exhibit unusual gene transcription employing a polycistronic transcription mechanism through trans-splicing that regulates its life cycle. Using the Deep Seq transcriptome sequencing we characterized the heme induced transcriptome of epimastigotes and determined that most of the upregulated genes were related to glucose metabolism inside the glycosomes. These results were supported by the upregulation of glycosomal isoforms of PEPCK and fumarate reductase of heme-treated parasites, implying that the fermentation process was favored. Moreover, the downregulation of mitochondrial gene enzymes in the presence of heme also supported the hypothesis that heme shifts the parasite glycosomal glucose metabolism towards aerobic fermentation. These results are examples of the environmental metabolic plasticity inside the vector supporting ATP production, promoting epimastigotes proliferation and survival.


Subject(s)
Gene Expression Profiling , Heme/pharmacology , Trypanosoma cruzi/drug effects , Trypanosoma cruzi/metabolism , Animals , Chagas Disease/metabolism , Genes, Mitochondrial , Glucose/metabolism , Insect Vectors/parasitology , Microbodies/metabolism , Signal Transduction , Transcription, Genetic , Triatominae/parasitology , Trypanosoma cruzi/genetics , Trypanosoma cruzi/growth & development
3.
Free Radic Biol Med ; 108: 183-191, 2017 07.
Article in English | MEDLINE | ID: mdl-28363600

ABSTRACT

Trypanosoma cruzi is the causative agent of Chagas disease and has a single mitochondrion, an organelle responsible for ATP production and the main site for the formation of reactive oxygen species (ROS). T. cruzi is an obligate intracellular parasite with a complex life cycle that alternates between vertebrate and invertebrate hosts, therefore the development of survival strategies and morphogenetic adaptations to deal with the various environments is mandatory. Over the years our group has been studying the vector-parasite interactions using heme as a physiological oxidant molecule that triggered epimastigote proliferation however, the source of ROS induced by heme remained unknown. In the present study we demonstrate the involvement of heme in the parasite mitochondrial metabolism, decreasing oxygen consumption leading to increased mitochondrial ROS and membrane potential. First, we incubated epimastigotes with carbonyl cyanide p-(trifluoromethoxy) phenylhydrazone (FCCP), an uncoupler of oxidative phosphorylation, which led to decreased ROS formation and parasite proliferation, even in the presence of heme, correlating mitochondrial ROS and T. cruzi survival. This hypothesis was confirmed after the mitochondria-targeted antioxidant ((2-(2,2,6,6 Tetramethylpiperidin-1-oxyl-4-ylamino)-2-oxoethyl) triphenylphosphonium chloride (MitoTEMPO) decreased both heme-induced ROS and epimastigote proliferation. Furthermore, heme increased the percentage of tetramethylrhodamine methyl ester (TMRM) positive parasites tremendously-indicating the hyperpolarization and increase of potential of the mitochondrial membrane (ΔΨm). Assessing the mitochondrial functional metabolism, we observed that in comparison to untreated parasites, heme-treated epimastigotes decreased their oxygen consumption, and increased the complex II-III activity. These changes allowed the electron flow into the electron transport system, even though the complex IV (cytochrome c oxidase) activity decreased significantly, showing that heme-induced mitochondrial ROS appears to be a consequence of the enhanced mitochondrial physiological modulation. Finally, the parasites that were submitted to high concentrations of heme presented no alterations in the ultrastructure. Consequently, our results suggest that heme released by the insect vector after the blood meal, modify epimastigote mitochondrial physiology to increase ROS as a metabolic mechanism to maintain epimastigote survival and proliferation.


Subject(s)
Chagas Disease/immunology , Heme/metabolism , Mitochondria/metabolism , Trypanosoma cruzi/physiology , Animals , Carbonyl Cyanide p-Trifluoromethoxyphenylhydrazone/metabolism , Cell Growth Processes , Cells, Cultured , Electron Transport , Electron Transport Complex IV/metabolism , Energy Metabolism , Humans , Life Cycle Stages , Membrane Potential, Mitochondrial , Organophosphorus Compounds/metabolism , Oxygen Consumption , Piperidines/metabolism , Reactive Oxygen Species/metabolism , Rhodamines/metabolism
4.
PLoS One ; 10(2): e0116712, 2015.
Article in English | MEDLINE | ID: mdl-25671543

ABSTRACT

Trypanosoma cruzi proliferate and differentiate inside different compartments of triatomines gut that is the first environment encountered by T. cruzi. Due to its complex life cycle, the parasite is constantly exposed to reactive oxygen species (ROS). We tested the influence of the pro-oxidant molecules H2O2 and the superoxide generator, Paraquat, as well as, metabolism products of the vector, with distinct redox status, in the proliferation and metacyclogenesis. These molecules are heme, hemozoin and urate. We also tested the antioxidants NAC and GSH. Heme induced the proliferation of epimastigotes and impaired the metacyclogenesis. ß-hematin, did not affect epimastigote proliferation but decreased parasite differentiation. Conversely, we show that urate, GSH and NAC dramatically impaired epimastigote proliferation and during metacyclogenesis, NAC and urate induced a significant increment of trypomastigotes and decreased the percentage of epimastigotes. We also quantified the parasite loads in the anterior and posterior midguts and in the rectum of the vector by qPCR. The treatment with the antioxidants increased the parasite loads in all midgut sections analyzed. In vivo, the group of vectors fed with reduced molecules showed an increment of trypomastigotes and decreased epimastigotes when analyzed by differential counting. Heme stimulated proliferation by increasing the cell number in the S and G2/M phases, whereas NAC arrested epimastigotes in G1 phase. NAC greatly increased the percentage of trypomastigotes. Taken together, these data show a shift in the triatomine gut microenvironment caused by the redox status may also influence T. cruzi biology inside the vector. In this scenario, oxidants act to turn on epimastigote proliferation while antioxidants seem to switch the cycle towards metacyclogenesis. This is a new insight that defines a key role for redox metabolism in governing the parasitic life cycle.


Subject(s)
Insect Vectors/parasitology , Trypanosoma cruzi/cytology , Trypanosoma cruzi/physiology , Acetylcysteine/pharmacology , Animals , Antioxidants/pharmacology , Cell Cycle/drug effects , Cell Proliferation/drug effects , Heme/pharmacology , Hydrogen Peroxide/pharmacology , Oxidation-Reduction/drug effects , Rhodnius/parasitology , Trypanosoma cruzi/drug effects , Trypanosoma cruzi/metabolism , Uric Acid/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...