Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 25
Filter
Add more filters











Publication year range
1.
PLoS Biol ; 22(7): e3002074, 2024 Jul.
Article in English | MEDLINE | ID: mdl-39038054

ABSTRACT

While interactions between neural crest and placode cells are critical for the proper formation of the trigeminal ganglion, the mechanisms underlying this process remain largely uncharacterized. Here, by using chick embryos, we show that the microRNA (miR)-203, whose epigenetic repression is required for neural crest migration, is reactivated in coalescing and condensing trigeminal ganglion cells. Overexpression of miR-203 induces ectopic coalescence of neural crest cells and increases ganglion size. By employing cell-specific electroporations for either miR-203 sponging or genomic editing using CRISPR/Cas9, we elucidated that neural crest cells serve as the source, while placode cells serve as the site of action for miR-203 in trigeminal ganglion condensation. Demonstrating intercellular communication, overexpression of miR-203 in the neural crest in vitro or in vivo represses an miR-responsive sensor in placode cells. Moreover, neural crest-secreted extracellular vesicles (EVs), visualized using pHluorin-CD63 vector, become incorporated into the cytoplasm of placode cells. Finally, RT-PCR analysis shows that small EVs isolated from condensing trigeminal ganglia are selectively loaded with miR-203. Together, our findings reveal a critical role in vivo for neural crest-placode communication mediated by sEVs and their selective microRNA cargo for proper trigeminal ganglion formation.


Subject(s)
Cell Communication , Extracellular Vesicles , MicroRNAs , Neural Crest , Trigeminal Ganglion , Neural Crest/metabolism , Neural Crest/embryology , Neural Crest/cytology , Animals , MicroRNAs/metabolism , MicroRNAs/genetics , Trigeminal Ganglion/metabolism , Trigeminal Ganglion/embryology , Trigeminal Ganglion/cytology , Extracellular Vesicles/metabolism , Chick Embryo , Cell Communication/genetics , Cell Movement/genetics , Gene Expression Regulation, Developmental
2.
Food Microbiol ; 119: 104453, 2024 May.
Article in English | MEDLINE | ID: mdl-38225042

ABSTRACT

This study assessed the efficacy of ozone (bubble diffusion in water; 6.25 ppm) and photodynamic inactivation (PDT) using curcumin (75 µM) as photosensitizer (LED emission 430-470 nm; 33.6 mW/cm2 irradiance; 16.1, 20.2, and 24.2 J/cm2 light dose) against the Norovirus surrogate bacteriophage MS2 in Brazilian berries (black mulberry and pitanga) and surfaces (glass and stainless steel). Contaminated berries and surfaces were immersed in ozonized water or exposed to PDT-curcumin for different time intervals. Transmission electron microscopy was used to assess the effects of the treatments on MS2 viral particles. The MS2 inactivation by ozone and PDT-curcumin varied with the fruit and the surface tested. Ozone reduced the MS2 titer up to 3.6 log PFU/g in black mulberry and 4.1 log PFU/g in pitanga. On surfaces, the MS2 reduction by ozone reached 3.6 and 4.8 log PFU/cm2 on glass and stainless steel, respectively. PDT-curcumin reduced the MS2 3.2 and 4.8 log PFU/g in black mulberry and pitanga and 2.7 and 3.3 log PFU/cm2 on glass and stainless steel, respectively. MS2 particles were disintegrated by exposure of MS2 to ozone and PDT-curcumin on pitanga. Results can contribute to establishing effective practices for controlling NoV in fruits and surfaces, estimated based on MS2 bacteriophage behavior.


Subject(s)
Curcumin , Norovirus , Ozone , Fruit , Levivirus , Stainless Steel , Ozone/pharmacology , Brazil , Curcumin/pharmacology , Water/pharmacology , Virus Inactivation
3.
Mem Inst Oswaldo Cruz ; 118: e220295, 2023.
Article in English | MEDLINE | ID: mdl-37878830

ABSTRACT

BACKGROUND: Trypanosoma cruzi, which causes Chagas disease (CD), is a versatile haemoparasite that uses several strategies to evade the host's immune response, including adipose tissue (AT), used as a reservoir of infection. As it is an effective barrier to parasite evasion, the effectiveness of the drug recommended for treating CD, Benznidazole (BZ), may be questionable. OBJECTIVE: To this end, we evaluated the parasite load and immunomodulation caused by BZ treatment in the culture of adipocytes differentiated from human adipose tissue-derived stem cells (ADSC) infected with T. cruzi. METHODS: The ADSC were subjected to adipogenic differentiation. We then carried out four cultures in which we infected the differentiated AT with trypomastigote forms of the Y strain of T. cruzi and treated them with BZ. After the incubation, the infected AT was subjected to quantitative polymerase chain reaction (qPCR) to quantify the parasite load and transmission electron microscopy (TEM) to verify the infection. The supernatant was collected to measure cytokines, chemokines, and adipokines. FINDINGS: We found elevated secretion of IL-6, CXCL-10/IP-10, CCL2/MCP-1, CCL5/RANTES, and leptin in infected fat cells. However, treatment with BZ promoted a decrease in IL-6. MAIN CONCLUSION: Therefore, we believe that BZ has a beneficial role as it reduces inflammation in infected fat cells.


Subject(s)
Chagas Disease , Nitroimidazoles , Trypanocidal Agents , Trypanosoma cruzi , Humans , Interleukin-6 , Chagas Disease/parasitology , Nitroimidazoles/pharmacology , Nitroimidazoles/therapeutic use , Adipose Tissue , Adipocytes , Cell Differentiation , Trypanocidal Agents/pharmacology , Trypanocidal Agents/therapeutic use
4.
Front Microbiol ; 14: 1152480, 2023.
Article in English | MEDLINE | ID: mdl-37250062

ABSTRACT

Chikungunya virus (CHIKV) is an arthropod-borne virus recently associated with large outbreaks in many parts of the world. Infection is typically manifested as a febrile and self-limited illness, characterized by joint pain and myalgia, albeit severe neurological manifestations are also reported. Although CHIKV is not recognized as a truly neurotropic virus, neurons, astrocytes, and oligodendrocytes are susceptible to infection in vitro. Here we employed a model of 3D cell culture to obtain neurospheres from ATRA/BNDF differentiated human neuroblastoma cells. We demonstrate that CHIKV is able to establish a productive infection, resulting in ultrastructural changes in cell morphology and impaired neuronal differentiation. Ultrastructural analysis of neurospheres infected with CHIKV during neuronal differentiation revealed diminished neuron dendrite formation, accumulation of viral particles associated with the plasma membrane, numerous cell vacuoles, and swollen mitochondria. Apoptotic cells were significantly increased at 72 h post-infection. Compared to Zika virus, a well-characterized neurotropic arbovirus, CHIKV infection resulted in a more discrete, albeit detectable upregulation of IL-6 levels. Finally, we found that CHIKV infection resulted in an altered profile expression, mainly downregulation, of a group of transcription factors named Hox genes. Altogether our findings highlight important features of CHIKV in the CNS, as well as the feasibility of neurospheres as robust experimental models that can support further studies for novel pharmacological interventions.

5.
bioRxiv ; 2023 Mar 15.
Article in English | MEDLINE | ID: mdl-36993487

ABSTRACT

While interactions between neural crest and placode cells are critical for the proper formation of the trigeminal ganglion, the mechanisms underlying this process remain largely uncharacterized. Here, we show that the microRNA-(miR)203, whose epigenetic repression is required for neural crest migration, is reactivated in coalescing and condensing trigeminal ganglion cells. Overexpression of miR-203 induces ectopic coalescence of neural crest cells and increases ganglion size. Reciprocally, loss of miR-203 function in placode, but not neural crest, cells perturbs trigeminal ganglion condensation. Demonstrating intercellular communication, overexpression of miR-203 in the neural crest in vitro or in vivo represses a miR-responsive sensor in placode cells. Moreover, neural crest-secreted extracellular vesicles (EVs), visualized using pHluorin-CD63 vector, become incorporated into the cytoplasm of placode cells. Finally, RT-PCR analysis shows that small EVs isolated from condensing trigeminal ganglia are selectively loaded with miR-203. Together, our findings reveal a critical role in vivo for neural crest-placode communication mediated by sEVs and their selective microRNA cargo for proper trigeminal ganglion formation.

6.
Mem. Inst. Oswaldo Cruz ; 118: e220295, 2023. graf
Article in English | LILACS-Express | LILACS | ID: biblio-1521239

ABSTRACT

BACKGROUND Trypanosoma cruzi, which causes Chagas disease (CD), is a versatile haemoparasite that uses several strategies to evade the host's immune response, including adipose tissue (AT), used as a reservoir of infection. As it is an effective barrier to parasite evasion, the effectiveness of the drug recommended for treating CD, Benznidazole (BZ), may be questionable. OBJECTIVE To this end, we evaluated the parasite load and immunomodulation caused by BZ treatment in the culture of adipocytes differentiated from human adipose tissue-derived stem cells (ADSC) infected with T. cruzi. METHODS The ADSC were subjected to adipogenic differentiation. We then carried out four cultures in which we infected the differentiated AT with trypomastigote forms of the Y strain of T. cruzi and treated them with BZ. After the incubation, the infected AT was subjected to quantitative polymerase chain reaction (qPCR) to quantify the parasite load and transmission electron microscopy (TEM) to verify the infection. The supernatant was collected to measure cytokines, chemokines, and adipokines. FINDINGS We found elevated secretion of IL-6, CXCL-10/IP-10, CCL2/MCP-1, CCL5/RANTES, and leptin in infected fat cells. However, treatment with BZ promoted a decrease in IL-6. MAIN CONCLUSION Therefore, we believe that BZ has a beneficial role as it reduces inflammation in infected fat cells.

7.
Chem Biol Interact ; 333: 109316, 2021 Jan 05.
Article in English | MEDLINE | ID: mdl-33285127

ABSTRACT

Streptomyces hygroscopicus UFPEDA 3370 was fermented in submerged cultivation and the biomass extract was partitioned, obtaining a fraction purified named EB1. After purification of EB1 fraction, nigericin free acid was obtained and identified. Nigericin presented cytotoxic activity against several cancer cell lines, being most active against HL-60 (human leukemia) and HCT-116 (human colon carcinoma) cell lines, presenting IC50 and (IS) values: 0.0014 µM, (30.0) and 0.0138 µM (3.0), respectively. On HCT-116, nigericin caused apoptosis and autophagy. In this study, nigericin was also screened both in vitro and in silico against a panel of cancer-related kinases. Nigericin was able to inhibit both JAK3 and GSK-3ß kinases in vitro and its binding affinities were mapped through the intermolecular interactions with each target in silico.


Subject(s)
Antineoplastic Agents/pharmacology , Colorectal Neoplasms/pathology , Nigericin/pharmacology , Protein Kinase Inhibitors/pharmacology , Streptomyces/chemistry , Antineoplastic Agents/chemistry , Antineoplastic Agents/metabolism , Apoptosis/drug effects , Catalytic Domain , Cell Line, Tumor , Humans , Janus Kinase 3/antagonists & inhibitors , Janus Kinase 3/chemistry , Janus Kinase 3/metabolism , Molecular Docking Simulation , Nigericin/chemistry , Nigericin/metabolism , Protein Kinase Inhibitors/chemistry , Protein Kinase Inhibitors/metabolism
8.
J Appl Physiol (1985) ; 127(3): 713-725, 2019 09 01.
Article in English | MEDLINE | ID: mdl-31246557

ABSTRACT

Exercise training performed with lowered muscle glycogen stores can amplify adaptations related to oxidative metabolism, but it is not known if this is affected by the "train-low" strategy used (i.e., once-daily versus twice-a-day training). Fifteen healthy men performed 3 wk of an endurance exercise (100-min) followed by a high-intensity interval exercise 2 (twice-a-day group, n = 8) or 14 h (once-daily group, n = 7) later; therefore, the second training session always started with low muscle glycogen in both groups. Mitochondrial efficiency (state 4 respiration) was improved only for the twice-a-day group (group × training interaction, P < 0.05). However, muscle citrate synthase activity, mitochondria, and lipid area in intermyofibrillar and subsarcolemmal regions, and PGC1α, PPARα, and electron transport chain relative protein abundance were not altered with training in either group (P > 0.05). Markers of aerobic fitness (e.g., peak oxygen uptake) were increased, and plasma lactate, O2 cost, and rating of perceived exertion during a 100-min exercise task were reduced in both groups, although the reduction in rating of perceived exertion was larger in the twice-a-day group (group × time × training interaction, P < 0.05). These findings suggest similar training adaptations with both training low approaches; however, improvements in mitochondrial efficiency and perceived effort seem to be more pronounced with twice-a-day training.NEW & NOTEWORTHY We assessed, for the first time, the differences between two "train-low" strategies (once-daily and twice-a-day) in terms of training-induced molecular, functional, and morphological adaptations. We found that both strategies had similar molecular and morphological adaptations; however, only the twice-a-day strategy increased mitochondrial efficiency and had a superior reduction in the rating of perceived exertion during a constant-load exercise compared with once-daily training. Our findings provide novel insights into skeletal muscle adaptations using the "train-low" strategy.


Subject(s)
Adaptation, Physiological , Endurance Training , High-Intensity Interval Training , Mitochondria, Muscle/enzymology , Organelle Biogenesis , 3-Hydroxyacyl CoA Dehydrogenases/metabolism , Adult , Cell Respiration , Citrate (si)-Synthase/metabolism , Electron Transport Chain Complex Proteins/metabolism , Healthy Volunteers , Humans , Male , Mitochondria, Muscle/ultrastructure , Young Adult
9.
Toxicology ; 413: 24-32, 2019 02 01.
Article in English | MEDLINE | ID: mdl-30528861

ABSTRACT

Gold nanorods (AuNRs) have been studied extensively in biomedicine due to their biocompatibility and their unique properties. Some studies reported that AuNRs selectively accumulate on cancer cell mitochondria causing its death. However, the immediate effects of this accumulation needed further investigations. In this context, we evaluated the effect of AuNRs on the mitochondrial integrity of isolated rat liver mitochondria. We verified that AuNRs decreased the mitochondrial respiratory ratio by decreasing the phosphorylation and maximal states. Additionally, AuNRs caused a decrease in the production of mitochondrial ROS and a delay in mitochondrial swelling. Moreover, even with cyclosporine A treatment, AuNRs disrupted the mitochondrial potential. With the highest concentration of AuNRs studied, disorganized mitochondrial crests and intermembrane separation were observed in TEM images. These results indicate that AuNRs can interact with mitochondria, disrupting the electron transport chain. This study provides new evidence of the immediate effects of AuNRs on mitochondrial bioenergetics.


Subject(s)
Gold/toxicity , Mitochondria, Liver/drug effects , Nanotubes/toxicity , Oxygen Consumption/drug effects , Animals , Dose-Response Relationship, Drug , Gold/metabolism , Male , Mitochondria, Liver/metabolism , Mitochondria, Liver/pathology , Oxygen Consumption/physiology , Rats , Rats, Wistar
11.
Emerg Microbes Infect ; 6(8): e69, 2017 Aug 09.
Article in English | MEDLINE | ID: mdl-28790458

ABSTRACT

Zika virus (ZIKV) is a flavivirus that has recently been associated with an increased incidence of neonatal microcephaly and other neurological disorders. The virus is primarily transmitted by mosquito bite, although other routes of infection have been implicated in some cases. The Aedes aegypti mosquito is considered to be the main vector to humans worldwide; however, there is evidence that other mosquito species, including Culex quinquefasciatus, transmit the virus. To test the potential of Cx. quinquefasciatus to transmit ZIKV, we experimentally compared the vector competence of laboratory-reared Ae. aegypti and Cx. quinquefasciatus. Interestingly, we were able to detect the presence of ZIKV in the midgut, salivary glands and saliva of artificially fed Cx. quinquefasciatus. In addition, we collected ZIKV-infected Cx. quinquefasciatus from urban areas with high microcephaly incidence in Recife, Brazil. Corroborating our experimental data from artificially fed mosquitoes, ZIKV was isolated from field-caught Cx. quinquefasciatus, and its genome was partially sequenced. Collectively, these findings indicate that there may be a wider range of ZIKV vectors than anticipated.


Subject(s)
Culex/virology , Mosquito Vectors/virology , Virus Replication , Zika Virus/physiology , Aedes/virology , Animals , Brazil/epidemiology , Genome, Viral , Humans , Microcephaly/epidemiology , Mosquito Vectors/physiology , Saliva/virology , Salivary Glands/virology , Sequence Analysis, DNA , Zika Virus/genetics , Zika Virus/isolation & purification , Zika Virus Infection/epidemiology , Zika Virus Infection/transmission , Zika Virus Infection/virology
12.
Pesqui. bras. odontopediatria clín. integr ; 17(1): e3389, 13/01/2017. tab, ilus, graf
Article in English | LILACS, BBO - Dentistry | ID: biblio-914260

ABSTRACT

Objective: To investigate the antifungal potential of A. colubrina, and its phytochemical characteristics, thermal profile and toxicity. Material and Methods: To assess potential antifungal activity, the technique of microdilution was used with the determination of the Minimum Inhibitory Concentration and Minimum Fungicidal Concentration, using standard species of Candida and recent clinical isolates of Candida albicans. Analyses of action of the extract were performed on the wall and cell morphology of C. albicans, of the interactive effect between the plant extract and nystatin on C. albicans through the checkerboard method, and of growth kinetics. The phytochemical screening was determined by spectrophotometry. The thermal profile was traced with the determination of thermogravimetric curves (TG) and differential scanning calorimetry (DSC). The toxicity was evaluated by the method of hemolysis. Results: The extract of A. colubrina showed a fungistatic potential against all bacteria tested and it acted by modifying the cellular morphology of C. albicans. There was a synergism between nystatin and the plant extract (FIC=0.375), and 53.18% of total polyphenols were determined. The TG curve showed the occurrence of three steps of thermal decomposition. None of the tested concentrations became the effective cytotoxic concentration. Conclusion: Further studies should be conducted to understand the efficacy and the mechanisms of action involved in the antifungal activity of the plant extract of A. colubrina in order to produce a new drug for the treatment of oral candidiasis.


Subject(s)
Antifungal Agents , Candida albicans/immunology , Plant Extracts , Plants, Medicinal , Anti-Infective Agents , Brazil , Spectrometry, Fluorescence/methods
13.
Article in English | MEDLINE | ID: mdl-29430254

ABSTRACT

Babassu oil extraction is the main income source in nut breakers communities in northeast of Brazil. Among these communities, babassu oil is used for cooking but also medically to treat skin wounds and inflammation, and vulvovaginitis. This study aimed to evaluate the anti-inflammatory activity of babassu oil and develop a microemulsion system with babassu oil for topical delivery. Topical anti-inflammatory activity was evaluated in mice ear edema using PMA, arachidonic acid, ethyl phenylpropiolate, phenol, and capsaicin as phlogistic agents. A microemulsion system was successfully developed using a Span® 80/Kolliphor® EL ratio of 6 : 4 as the surfactant system (S), propylene glycol and water (3 : 1) as the aqueous phase (A), and babassu oil as the oil phase (O), and analyzed through conductivity, SAXS, DSC, TEM, and rheological assays. Babassu oil and lauric acid showed anti-inflammatory activity in mice ear edema, through inhibition of eicosanoid pathway and bioactive amines. The developed formulation (39% A, 12.2% O, and 48.8% S) was classified as a bicontinuous to o/w transition microemulsion that showed a Newtonian profile. The topical anti-inflammatory activity of microemulsified babassu oil was markedly increased. A new delivery system of babassu microemulsion droplet clusters was designed to enhance the therapeutic efficacy of vegetable oil.

14.
Int J Pharm ; 506(1-2): 351-60, 2016 Jun 15.
Article in English | MEDLINE | ID: mdl-27130362

ABSTRACT

Microemulsion containing pentoxifylline was developed and characterized for use as a topical alternative to treat skin disorders. The transparent formulation was developed and optimized based on a pseudoternary phase diagram. Pentoxifylline-loaded microemulsion (PTX-ME) was composed of 44% Tween 80™/Brij 52™ mix as surfactants (S), 51% of caprylic/capric triglycerides as the oil phase (O) and 5% of water as aqueous phase (A). It was classified as an isotropic water-in-oil (W/O) system with droplets that had a heterogeneous spherical shape within the nanosized range (67.36±8.90nm) confirmed by polarized light microscopy, differential scanning calorimetry (DSC), transmission electron microscopy (TEM) and dynamic light scattering (DLS) analysis. In vitro studies using static diffusion Franz cells revealed that the release of PTX from ME followed the Higuchi kinetic model. Topical PTX-ME application developed superior anti-inflammatory activity when compared to the PTX solution, reducing the paw edema up to 88.83%. Our results suggested that this colloidal nanosystem is a promising agent for the delivery of pentoxifylline, increasing its ability to modulate the inflammatory aspects of skin disorders.


Subject(s)
Excipients/chemistry , Pentoxifylline/administration & dosage , Phosphodiesterase Inhibitors/administration & dosage , Administration, Cutaneous , Animals , Chemistry, Pharmaceutical/methods , Disease Models, Animal , Drug Liberation , Edema/drug therapy , Emulsions , Inflammation/drug therapy , Male , Nanoparticles , Particle Size , Pentoxifylline/chemistry , Pentoxifylline/pharmacokinetics , Phase Transition , Phosphodiesterase Inhibitors/chemistry , Phosphodiesterase Inhibitors/pharmacokinetics , Rats , Rats, Wistar , Skin Absorption , Surface-Active Agents/chemistry
15.
Tissue Cell ; 46(6): 439-49, 2014 Dec.
Article in English | MEDLINE | ID: mdl-25239757

ABSTRACT

Sildenafil is a potent and selective inhibitor of phosphodiesterase-5 (PDE5) and is considered first-line therapy for erectile dysfunction. Nowadays, Sildenafil is used extensively throughout the world on patients with pulmonary hypertension. However, few studies have evaluated the possible side effects of chronic Sildenafil treatment on the male reproductive system, specifically in the prostate. In the present study, it was demonstrated via morphological and ultrastructural analysis that chronic treatment with Sildenafil induced an enhancement of the glandular activity of the prostate. In addition, mice treated with Sildenafil showed a significant increase in testosterone serum levels. However, no statistically significant differences were observed in nitric oxide serum levels, or in sGC, eNOS, PSA and TGF-ß prostatic expression. In conclusion, the present study suggests that chronic use of Sildenafil does not cause evident prostatic damage, and therefore, can be used pharmacologically to treat a variety of disorders.


Subject(s)
Erectile Dysfunction/drug therapy , Piperazines/administration & dosage , Prostate/ultrastructure , Sulfonamides/administration & dosage , Animals , Erectile Dysfunction/blood , Erectile Dysfunction/pathology , Humans , Hypertension, Pulmonary/drug therapy , Hypertension, Pulmonary/pathology , Male , Mice , Mice, Inbred C57BL , Nitric Oxide/blood , Nitric Oxide Synthase Type III/blood , Prostate/drug effects , Prostate-Specific Antigen/blood , Purines/administration & dosage , Sildenafil Citrate , Testosterone/blood , Transforming Growth Factor beta/blood
16.
Int J Exp Pathol ; 94(3): 230-40, 2013 Jun.
Article in English | MEDLINE | ID: mdl-23672767

ABSTRACT

The aim of this study was to examine the effect of maternal exposure to Panax ginseng extract (GE) on the prenatal dexamethasone (DEXA)-induced increase in testosterone production by isolated Leydig cells in adult rats. Pregnant rats were treated with (i) GE (200 mg/kg) or vehicle on days 10-21; (ii) DEXA (100 µg/kg) or vehicle on days 14-21; or (iii) a combination of GE plus DEXA at the same doses and with the same regimen. Testosterone production was induced either by the activator of protein kinase A (dbcAMP) or substrates of steroidogenesis [22(R)-hydroxycholesterol (22(R)-OH-C)] and pregnenolone. The capacity of rat Leydig cells exposed to DEXA to synthesize testosterone induced by dbcAMP, 22(R)-OH-C or pregnenolone was increased in comparison with the control group. Combined exposure to DEXA + GE prevented the effect of DEXA on the responsiveness of Leydig cells to all inductors of testosterone synthesis, whereas GE alone did not modify the response to inductors. No modifications in testosterone production were observed under basal conditions. StAR immunoexpression in Leydig cells was not modified by prenatal exposure to DEXA, GE or DEXA + GE. P450scc and glucocorticoid receptor immunoexpression was higher in offspring exposed to DEXA in comparison with the control group. This increased expression was prevented by combined treatment with DEXA + GE. The present findings demonstrate that GE is capable of reversing the effect of DEXA on testosterone synthesis by rat Leydig cells.


Subject(s)
Dexamethasone/pharmacology , Leydig Cells/metabolism , Panax/chemistry , Plant Extracts/pharmacology , Prenatal Exposure Delayed Effects/metabolism , Testosterone/biosynthesis , Age Factors , Animals , Body Weight/drug effects , Cholesterol Side-Chain Cleavage Enzyme/metabolism , Drug Interactions , Female , Glucocorticoids/pharmacology , Leydig Cells/ultrastructure , Male , Microscopy, Electron, Transmission , Organ Size/drug effects , Phosphoproteins/metabolism , Pregnancy , Rats , Rats, Wistar , Testis/cytology , Testis/drug effects , Testis/metabolism , Testosterone/blood
17.
Int J Exp Pathol ; 92(4): 272-80, 2011 Aug.
Article in English | MEDLINE | ID: mdl-21507087

ABSTRACT

Insulin-degrading enzyme (IDE) has been shown to enhance the binding of androgen and glucocorticoid receptors to DNA in the nuclear compartment. Glucocorticoids cause hyperglycaemia, peripheral resistance to insulin and compensatory hyperinsulinaemia. The aim of the present study was to investigate the effect of dexamethasone (D), testosterone (T) and dexamethasone plus testosterone (D + T) on the regulation of IDE and on the remodelling of rat ventral prostate after castration (C). Castration led to a marked reduction in prostate weight (PW). Body weight was significantly decreased in the castrated animals treated with dexamethasone, and the relative PW was 2.6-fold (±0.2) higher in the D group, 2.8-fold (±0.3) higher in the T group and 6.6-fold (±0.6) higher in the D + T group in comparison with the castrated rats. Ultrastructural alterations in the ventral prostate in response to androgen deprivation were restored after testosterone and dexamethasone plus testosterone treatments and partially restored with dexamethasone alone. The nuclear IDE protein level indicated a 4.3-fold (±0.4) increase in castrated rats treated with D + T when compared with castration alone. Whole-cell IDE protein levels increased approximately 1.5-fold (±0.1), 1.5-fold (±0.1) and 2.9-fold (±0.2) in the D, T and D + T groups, respectively, when compared with castration alone. In conclusion, the present study reports that dexamethasone-induced hyperinsulinaemic condition plus exogenous testosterone treatment leads to synergistic effects of insulin and testosterone in the prostatic growth and in the amount of IDE in the nucleus and whole epithelial cell.


Subject(s)
Castration , Dexamethasone/pharmacology , Insulysin/metabolism , Prostate/metabolism , Prostate/pathology , Testosterone/pharmacology , Androgens/pharmacology , Animals , Body Weight/drug effects , Cell Nucleus/drug effects , Cell Nucleus/metabolism , Cell Nucleus/pathology , Dexamethasone/adverse effects , Glucocorticoids/adverse effects , Glucocorticoids/pharmacology , Hyperinsulinism/chemically induced , Hyperinsulinism/metabolism , Insulysin/drug effects , Male , Models, Animal , Prostate/drug effects , Rats , Rats, Wistar
18.
Reprod Biol Endocrinol ; 8: 13, 2010 Feb 09.
Article in English | MEDLINE | ID: mdl-20144211

ABSTRACT

BACKGROUND: The present study was designed to examine the effect of chronic treatment with rosiglitazone - thiazolidinedione used in the treatment of type 2 diabetes mellitus for its insulin sensitizing effects - on the Leydig cell steroidogenic capacity and expression of the steroidogenic acute regulatory protein (StAR) and cholesterol side-chain cleavage enzyme (P450scc) in normal adult rats. METHODS: Twelve adult male Wistar rats were treated with rosiglitazone (5 mg/kg) administered by gavage for 15 days. Twelve control animals were treated with the vehicle. The ability of rosiglitazone to directly affect the production of testosterone by Leydig cells ex vivo was evaluated using isolated Leydig cells from rosiglitazone-treated rats. Testosterone production was induced either by activators of the cAMP/PKA pathway (hCG and dbcAMP) or substrates of steroidogenesis [22(R)-hydroxy-cholesterol (22(R)-OH-C), which is a substrate for the P450scc enzyme, and pregnenolone, which is the product of the P450scc-catalyzed step]. Testosterone in plasma and in incubation medium was measured by radioimmunoassay. The StAR and P450scc expression was detected by immunocytochemistry. RESULTS: The levels of total circulating testosterone were not altered by rosiglitazone treatment. A decrease in basal or induced testosterone production occurred in the Leydig cells of rosiglitazone-treated rats. The ultrastructural and immunocytochemical analysis of Leydig cells from rosiglitazone-treated rats revealed cells with characteristics of increased activity as well as increased StAR and P450scc expression, which are key proteins in androgen biosynthesis. However, a number of rosiglitazone-treated cells exhibited significant mitochondrial damage. CONCLUSION: The results revealed that the Leydig cells from rosiglitazone-treated rats showed significant reduction in testosterone production under basal, hCG/dbcAMP- or 22 (R)-OH-C/pregnenolone-induced conditions, although increased labeling of StAR and P450scc was detected in these cells by immunocytochemistry. The ultrastructural study suggested that the lower levels of testosterone produced by these cells could be due to mitochondrial damage induced by rosiglitazone.


Subject(s)
Leydig Cells/drug effects , Steroids/biosynthesis , Thiazolidinediones/pharmacology , Animals , Body Weight/drug effects , Cells, Cultured , Cholesterol Side-Chain Cleavage Enzyme/metabolism , Drug Evaluation, Preclinical , Hypoglycemic Agents/adverse effects , Hypoglycemic Agents/pharmacology , Leydig Cells/metabolism , Leydig Cells/ultrastructure , Male , Organ Size/drug effects , Phosphoproteins/metabolism , Rats , Rats, Wistar , Rosiglitazone , Seminal Vesicles/cytology , Seminal Vesicles/drug effects , Testis/cytology , Testis/drug effects , Testosterone/blood , Thiazolidinediones/adverse effects , Time Factors
19.
Recife; s.n; 2010. 121 p.
Thesis in Portuguese | LILACS | ID: lil-575930

ABSTRACT

O inibidor de fosfodiesterase-5 (PDE5), Sildenafil, é uma nova abordagem de tratamento oral para a hipertensão pulmonar. O esquema terapêutico envolve a administração de doseselevadas diariamente e, até o momento, se desconhece a ação desta droga sobre células germinativas. Uma vez que as células de Leydig e células peritubulares apresentam a PDE5, este estudo foi conduzido para investigar os efeitos do tratamento crônico com Sildenafil sobre as células de Leydig e espermatozóides de camundongos. Após o ensaio experimental, células de Leydig e espermatozóides foram analisados por procedimentos morfológicos, imunocitoquímicos e moleculares, e a testosterona no soro foi avaliada por radioimunoensaio.Inúmeras alterações foram observadas após o tratamento. As células de Leydig apresentaram modificações ultra-estruturais, tais como REL vesicular, grandes vacúolos distribuídos nocitoplasma, gotículas de lipídio claras, mitocôndrias dilatadas e círculos concêntricos de REL com vesículas na periferia, que são características típicas de células secretoras de esteróidesativadas. Os espermatozóides apresentaram mitocôndrias vacuolizadas. Um aumento na expressão da StAR, P450scc, testosterona, GCs, PKA e PKGI foi detectado nas células de Leydig. As sintases de óxido nítrico não foram detectadas nas células de Leydig pela técnica de western blot. Nos espermatozóides, a imunocitoquímica revelou uma diminuição na expressão da GCs e PKA, mas nenhuma alteração na marcação foi observada para a PKG.Nenhuma mudança significativa foi observada nos parâmetros de motilidade, viabilidade, integridade de acrossoma e DNA de espermatozóides. Adicionalmente, os níveis de testosterona no soro tornaram-se aumentados após quatro semanas de tratamento. Os resultados do presente estudo são consistentes com a hipótese de que a acumulação de GMPc, pela inibição da PDE5, e a ativação de suas vias dependentes estariam envolvidas na estimulação da biossíntese de androgênio...


Subject(s)
Leydig Cells , Phosphodiesterase Inhibitors , Spermatozoa
20.
Int J Exp Pathol ; 90(4): 454-62, 2009 Aug.
Article in English | MEDLINE | ID: mdl-19659904

ABSTRACT

The phosphodiesterase type 5 (PDE5) inhibitor, Sildenafil, is a novel, oral treatment approach for pulmonary hypertension. As Leydig cells present PDE5, this study was conducted to investigate the effects of the chronic treatment with Sildenafil (25 mg/kg) on male Swiss Webster mice steroidogenesis. After a 4-week long experimental design, Leydig cells were analysed by morphological and immunocytochemical procedures. Serum testosterone was assayed by radioimmunoassay. Leydig cells presented noteworthy ultrastructural alterations, such as a vesicular smooth endoplasmic reticulum, large vacuoles scattered through the cytoplasm, enlarged mitochondria with discontinue cristaes and whorle membranes with vesicles at the periphery, which are typical characteristics of an activated steroid-secreting cell. Important immunocytochemical labelling for steroidogenic acute regulatory protein, cytochrome P450 side-chain cleavage enzyme and testosterone were detected in isolated Leydig cells. In addition, Sildenafil-treated mice showed significant increased levels of total testosterone. The results obtained in the present study are consistent with the hypothesis that the accumulation of cyclic guanosine monophosphate by PDE5 inhibition could be involved in the androgen biosynthesis stimulation. Important clinical implications of hormonal disorders should be taken into account for patients with pulmonary hypertension.


Subject(s)
Leydig Cells/metabolism , Phosphodiesterase 5 Inhibitors , Piperazines/pharmacology , Sulfones/pharmacology , Testosterone/biosynthesis , Vasodilator Agents/pharmacology , Animals , Cells, Cultured , Cholesterol Side-Chain Cleavage Enzyme/analysis , Immunohistochemistry , Leydig Cells/drug effects , Leydig Cells/ultrastructure , Male , Mice , Mice, Inbred Strains , Microscopy, Electron, Transmission , Phosphoproteins/analysis , Purines/pharmacology , Sildenafil Citrate , Stimulation, Chemical , Testosterone/analysis , Testosterone/blood
SELECTION OF CITATIONS
SEARCH DETAIL