Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Plant J ; 107(6): 1681-1696, 2021 09.
Article in English | MEDLINE | ID: mdl-34231270

ABSTRACT

Plant expansins are structural cell wall-loosening proteins implicated in several developmental processes and responses to environmental constraints and pathogen infection. To date, there is limited information about the biological function of expansins-like B (EXLBs), one of the smallest and less-studied subfamilies of plant expansins. In the present study, we conducted a functional analysis of the wild Arachis AdEXLB8 gene in transgenic tobacco (Nicotiana tabacum) plants to clarify its putative role in mediating defense responses to abiotic and biotic stresses. First, its cell wall localization was confirmed in plants expressing an AdEXLB8:eGFP fusion protein, while nanomechanical assays indicated cell wall reorganization and reassembly due to AdEXLB8 overexpression without compromising the phenotype. We further demonstrated that AdEXLB8 increased tolerance not only to isolated abiotic (drought) and biotic (Sclerotinia sclerotiorum and Meloidogyne incognita) stresses but also to their combination. The jasmonate and abscisic acid signaling pathways were clearly favored in transgenic plants, showing an activated antioxidative defense system. In addition to modifications in the biomechanical properties of the cell wall, we propose that AdEXLB8 overexpression interferes with phytohormone dynamics leading to a defense primed state, which culminates in plant defense responses against isolated and combined abiotic and biotic stresses.


Subject(s)
Arachis/genetics , Nicotiana/physiology , Plant Proteins/genetics , Stress, Physiological/genetics , Abscisic Acid/metabolism , Animals , Ascomycota/pathogenicity , Biomechanical Phenomena , Cell Wall/genetics , Cell Wall/metabolism , Cyclopentanes/metabolism , Droughts , Gene Expression Regulation, Plant , Oxylipins/metabolism , Plant Cells/metabolism , Plant Leaves/physiology , Plant Proteins/metabolism , Plants, Genetically Modified , Recombinant Fusion Proteins/genetics , Recombinant Fusion Proteins/metabolism , Nicotiana/cytology , Nicotiana/genetics , Nicotiana/microbiology , Tylenchoidea/pathogenicity
2.
J Proteomics ; 217: 103690, 2020 04 15.
Article in English | MEDLINE | ID: mdl-32068185

ABSTRACT

Arachis stenosperma is a wild peanut relative exclusive to South America that harbors high levels of resistance against several pathogens, including the peanut root-knot nematode (RKN) Meloidogyne arenaria. In this study, a proteomic survey of A. stenosperma-M. arenaria interaction using 2-DE and LC-MS/MS identified approximately 1400 proteins, out of which 222 were differentially abundant (DAPs) when RKN inoculated root samples were compared to the control. Most of these DAPs were assigned to functional categories related to plant responses to pathogens including stress, glycolysis, redox and tricarboxylic acid cycle. The comparison between the transcriptome (RNA-Seq) and proteome expression changes, showed that almost 55% of these DAPs encode genes with a similar expression trend to their protein counterparts. Most of these genes were induced during RKN infection and some were related to plant defense, such as MLP-like protein 34 (MLP34), cinnamoyl-CoA reductase 1 (CCR1), enolase (ENO), alcohol dehydrogenase (ADH) and eukaryotic translation initiation factor 5A (eIF5A). The overexpression of AsMLP34 in Agrobacterium rhizogenes transgenic roots in a susceptible peanut cultivar showed a reduction in the number of M. arenaria galls and egg masses, indicating that AsMLP34 is a promising candidate gene to be exploited in breeding programs for RKN control in peanut. SIGNIFICANCE: The use of an integrated approach to compare plant-nematode transcriptional and translational data enabled the identification of a new gene, AsMLP34, for Meloidogyne resistance.


Subject(s)
Tylenchoidea , Agrobacterium , Animals , Arachis/genetics , Chromatography, Liquid , Disease Resistance/genetics , Plant Breeding , Plant Diseases/genetics , Plant Roots , Proteomics , South America , Tandem Mass Spectrometry
3.
PLoS One ; 10(10): e0140937, 2015.
Article in English | MEDLINE | ID: mdl-26488731

ABSTRACT

Wild peanut relatives (Arachis spp.) are genetically diverse and were adapted to a range of environments during the evolution course, constituting an important source of allele diversity for resistance to biotic and abiotic stresses. The wild diploid A. stenosperma harbors high levels of resistance to a variety of pathogens, including the root-knot nematode (RKN) Meloidogyne arenaria, through the onset of the Hypersensitive Response (HR). In order to identify genes and regulators triggering this defense response, a comprehensive root transcriptome analysis during the first stages of this incompatible interaction was conducted using Illumina Hi-Seq. Overall, eight cDNA libraries were produced generating 28.2 GB, which were de novo assembled into 44,132 contigs and 37,882 loci. Differentially expressed genes (DEGs) were identified and clustered according to their expression profile, with the majority being downregulated at 6 DAI, which coincides with the onset of the HR. Amongst these DEGs, 27 were selected for further qRT-PCR validation allowing the identification of nematode-responsive candidate genes that are putatively related to the resistance response. Those candidates are engaged in the salycilic (NBS-LRR, lipocalins, resveratrol synthase) and jasmonic (patatin, allene oxidase cyclase) acids pathways, and also related to hormonal balance (auxin responsive protein, GH3) and cellular plasticity and signaling (tetraspanin, integrin, expansin), with some of them showing contrasting expression behavior between Arachis RKN-resistant and susceptible genotypes. As these candidate genes activate different defensive signaling systems, the genetic (HR) and the induced resistance (IR), their pyramidding in one genotype via molecular breeding or transgenic strategy might contribute to a more durable resistance, thus improving the long-term control of RKN in peanut.


Subject(s)
Arachis/genetics , Disease Resistance/physiology , Plant Diseases/immunology , Plant Diseases/parasitology , Tylenchoidea/immunology , Animals , Cyclopentanes/metabolism , Gene Expression Profiling , Genes, Plant , Lipocalins/metabolism , Oxylipins/metabolism , Plant Roots/genetics , Resveratrol , Stilbenes/metabolism
4.
Plant Mol Biol Report ; 33: 1876-1892, 2015.
Article in English | MEDLINE | ID: mdl-26752807

ABSTRACT

Peanut (Arachis hypogaea L.) is an important legume cultivated mostly in drought-prone areas where its productivity can be limited by water scarcity. The development of more drought-tolerant varieties is, therefore, a priority for peanut breeding programs worldwide. In contrast to cultivated peanut, wild relatives have a broader genetic diversity and constitute a rich source of resistance/tolerance alleles to biotic and abiotic stresses. The present study takes advantage of this diversity to identify drought-responsive genes by analyzing the expression profile of two wild species, Arachis duranensis and Arachis magna (AA and BB genomes, respectively), in response to progressive water deficit in soil. Data analysis from leaves and roots of A. duranensis (454 sequencing) and A. magna (suppression subtractive hybridization (SSH)) stressed and control complementary DNA (cDNA) libraries revealed several differentially expressed genes in silico, and 44 of them were selected for further validation by quantitative RT-PCR (qRT-PCR). This allowed the identification of drought-responsive candidate genes, such as Expansin, Nitrilase, NAC, and bZIP transcription factors, displaying significant levels of differential expression during stress imposition in both species. This is the first report on identification of differentially expressed genes under drought stress and recovery in wild Arachis species. The generated transcriptome data, besides being a valuable resource for gene discovery, will allow the characterization of new alleles and development of molecular markers associated with drought responses in peanut. These together constitute important tools for the peanut breeding program and also contribute to a better comprehension of gene modulation in response to water deficit and rehydration.

SELECTION OF CITATIONS
SEARCH DETAIL
...