Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Language
Publication year range
1.
Arq. bras. med. vet. zootec. (Online) ; 73(1): 256-260, Jan.-Feb. 2021. tab, ilus
Article in English | LILACS, VETINDEX | ID: biblio-1153048

ABSTRACT

As vantagens dos animais transgênicos têm sido demonstradas em diferentes aplicações, entretanto muitas metodologias usadas para gerar animais geneticamente modificados (GM) apresentam baixas taxas de eficiência. O objetivo deste estudo foi avaliar a entrega dos vetores lentivirais (VLs) em zigotos durante a fertilização in vitro (FIV), para gerar embriões GM, com o gene da proteína verde fluorescente (GFP) ou do fator IX de coagulação humana (FIX). Vetores lentivirais com os genes GFP (pLGW-GFP-LV) ou FIX (pLWE2-FIX-LV) foram utilizados na FIV ou na cultura de embriões in vitro (CIV). A coincubação de pLWE2-FIX-LV com espermatozoides e complexos oócitos-células do cumulus (COCs) durante a FIV diminuiu (P<0,05) as taxas de clivagem e de blastocistos, enquanto com pLGW-GFP-LV diminuiu (P<0,05) a taxa de blastocisto quando se comparou ao controle sem VL. A coincubação de pLWE2-FIX-LV e pLGW-GFP-LV com presumíveis zigotos durante a CIV não afetou (P>0,05) o desenvolvimento embrionário. A expressão da proteína GFP não foi detectada em embriões após a coincubação de FIV ou CIV, embora as células do cumulus expressassem a proteína até o dia oito de cultivo in vitro. Reações em cadeia da polimerase (PCR) não detectaram os genes GFP ou FIX em embriões, mas ambos foram detectados em células do cumulus. Assim, a coincubação de VL com espermatozoide bovino e COCs não é eficaz para produzir embriões geneticamente modificados por meio de FIV.(AU)


Subject(s)
Animals , Cattle , Zygote , Animals, Genetically Modified/genetics , Transgenes , Embryo, Mammalian , Genetic Vectors/analysis , Fertilization in Vitro/veterinary , Gene Transfer Techniques/veterinary
2.
Data Brief ; 7: 1211-1216, 2016 Jun.
Article in English | MEDLINE | ID: mdl-27761503

ABSTRACT

Here we present kinetics data from bovine sex-specific embryo development. Embryos were originated using sex-sorted semen from three different Nelore bulls, and semen from the same batch was used for X-and Y-chromosome spermatozoa sorting. Data was obtained for six time points (24, 48, 96, 120, and 144 h.p.i.). Analyses for each bull׳s embryos (1, 2 and 3) is presented for female and male groups separately. Also, grouped data analysis, considering bull and sex interaction, is shown. For further interpretation and discussion, see "Cell death is involved in sexual dimorphism during preimplantation development" (Oliveira et al., 2015 [1]).

3.
Mech Dev ; 139: 42-50, 2016 Feb.
Article in English | MEDLINE | ID: mdl-26752320

ABSTRACT

In bovine preimplantation development, female embryos progress at lower rates and originate smaller blastocysts than male counterparts. Although sex-specific gene expression patterns are reported, when and how sex dimorphism is established is not clear. Differences among female and male early development can be useful for human assisted reproductive medicine, when X-linked disorders risk is detected, and for genetic breeding programs, especially in dairy cattle, which requires female animals for milk production. The aim of this study was to characterize the development of female and male embryos, attempting to identify sex effects during preimplantation development and the role of cell death in this process. Using sex-sorted semen from three different bulls for fertilization, we compared kinetics of bovine sex-specific embryos in six time points, and cell death was assessed in viable embryos. For kinetics analysis, we detected an increased population of female embryos arrested at 48 and 120h.p.i., suggesting this time points as delicate stages of development for female embryos that should be considered for testing improvement strategies for assisted reproductive technologies. Assessing viable embryos quality, we found 144h.p.i. is the first time point when viable embryos are phenotypically distinct: cell number is decreased, and apoptosis and cell fragmentation are increased in female embryos at this stage. These new results lead us to propose that sex dimorphism in viable embryos is established during morula-blastocyst transition, and cell death is involved in this process.


Subject(s)
Apoptosis , Embryonic Development , Animals , Blastocyst/physiology , Cattle , Embryo Implantation , Female , Fertilization in Vitro , Male , Sex Characteristics
4.
Theriogenology ; 80(1): 10-7, 2013 Jul 01.
Article in English | MEDLINE | ID: mdl-23623163

ABSTRACT

The objective was to evaluate reproductive tract development (ovary and uterus) and onset of puberty in two lines of Nellore heifers (Bos indicus) selected for postweaning weight. A total of 123 heifers, including 46 from the control Nellore line (NeC) and 77 from the selection Nellore line (NeS) were used. Every 18 to 21 days from 12 to 24 months of age, average ovarian area (OVA), endometrial thickness (ETh), and diameter of the largest follicle in each ovary were evaluated (using transrectal ultrasonography), and body weight, hip height, and body condition score were measured. There were no differences between NeS and NeC heifers for ETh or OVA (P < 0.05). Genetic selection for higher postweaning weight had no negative influence on the onset of puberty, with 52% and 48% of NeC and NeS heifers, respectively, pubertal at 24 months of age (P = 0.49). Heifers that reached puberty at the end of the study were heavier (NeC, 296.9 vs. 276.7 kg; NeS, 343.5 vs. 327.9 kg; P < 0.01) and younger (NeC, 23.4 vs. 24.2 mo; NeS, 22.7 vs. 24.0 months; P < 0.01) than those that did not. Furthermore, heifers that were heavier at weaning reached puberty earlier. Pubertal heifers had a greater OVA (4.15 vs. 3.14 cm(2); P < 0.01) and ETh (12.15 vs. 9.93 mm; P < 0.01) than nonpubertal heifers. Taken together, OVA and ETh had positive effects (P < 0.01) on the onset of puberty and were suitable indicator traits of heifer sexual precocity in pasture management systems. However, selection for weight did not alter ovarian or endometrial development, or manifestation of puberty at 24 months of age. Among the growth traits studied, weaning weight and weight at puberty had significant positive effects on manifestation of first estrus.


Subject(s)
Body Weight , Cattle/growth & development , Endometrium/growth & development , Ovary/growth & development , Sexual Maturation/physiology , Weaning , Aging , Animals , Cattle/genetics , Endometrium/diagnostic imaging , Estrus/physiology , Female , Ovarian Follicle/diagnostic imaging , Ovary/diagnostic imaging , Reproduction , Selection, Genetic , Species Specificity , Ultrasonography
5.
Reprod Domest Anim ; 47(3): 428-35, 2012 Jun.
Article in English | MEDLINE | ID: mdl-21933286

ABSTRACT

Despite extensive efforts, establishment of bovine embryonic stem (ES) cell lines has not been successful. We hypothesized that culture conditions for in vitro-produced (IVP) embryos, the most used source of inner cell mass (ICM) to obtain ES cells, might affect their undifferentiated state. Therefore, the aim of this work was to improve pluripotency of IVP blastocysts to produce suitable ICM for further culturing. We tested KSR and foetal calf serum (FCS) supplements in SOF medium and ES cell conditioned medium (CM) on IVC (groups: KSR, KSR CM, FCS and FCS CM). Cleavage and blastocyst rates were similar between all groups. Also, embryonic quality, assessed by apoptosis rates (TUNEL assay), total cell number and ICM percentage did not differ between experimental groups. However, expression of pluripotency-related markers was affected. We detected down-regulation of OCT3/4, SOX2 and SSEA1 in ICM of FCS CM blastocysts (p < 0.05). SOX2 gene expression revealed lower levels (p < 0.05) on KSR CM blastocysts and a remarkable variation in SOX2 mRNA levels on FCS-supplemented blastocysts. In conclusion, pluripotency-related markers tend to decrease after supplementation with ES cell CM, suggesting different mechanisms regulating mouse and bovine pluripotency. KSR supplementation did not differ from FCS, but FCS replacement by KSR may produce blastocysts with stable SOX2 gene expression levels.


Subject(s)
Cattle/embryology , Gene Expression Regulation, Developmental/physiology , Lewis X Antigen/metabolism , Octamer Transcription Factor-3/metabolism , Pluripotent Stem Cells/metabolism , SOXB1 Transcription Factors/metabolism , Animals , Cell Line , Culture Media, Conditioned , Embryo Culture Techniques/veterinary , Embryonic Stem Cells/physiology , Fertilization in Vitro , Lewis X Antigen/genetics , Mice , Octamer Transcription Factor-3/genetics , SOXB1 Transcription Factors/genetics
6.
Reprod Domest Anim ; 46(1): e62-6, 2011 Feb.
Article in English | MEDLINE | ID: mdl-20477984

ABSTRACT

Previously, three distinct populations of putative primordial germ cells (PGCs), namely gonocytes, intermediate cells and pre-spermatogonia, have been described in the human foetal testis. According to our knowledge, these PGCs have not been studied in any other species. The aim of our study was to identify similar PGC populations in canine embryos. First, we develop a protocol for canine embryo isolation. Following our protocol, 15 canine embryos at 21-25 days of pregnancy were isolated by ovaryhysterectomy surgery. Our data indicate that dramatic changes occur in canine embryo development and PGCs specification between 21 to 25 days of gestation. At that moment, only two PGC populations with distinct morphology can be identified by histological analyses. Cell population 1 presented round nuclei with prominent nucleolus and a high nuclear to cytoplasm ratio, showing gonocyte morphology. Cell population 2 was often localized at the periphery of the testicular cords and presented typical features of PGC. Both germ cell populations were positively immunostained with anti-human OCT-4 antibody. However, at day 25, all cells of population 1 reacted positively with OCT-4, whereas in population 2, fewer cells were positive for this marker. These two PGCs populations present morphological features similar to gonocytes and intermediate cells from human foetal testis. It is expected that a population of pre-spermatogonia would be observed at later stages of canine foetus development. We also showed that anti-human OCT-4 antibody can be useful to identify canine PGC in vivo.


Subject(s)
Dogs/embryology , Embryonic Development , Germ Cells , Animals , Cell Nucleus/ultrastructure , Cytoplasm/ultrastructure , Female , Germ Cells/chemistry , Germ Cells/ultrastructure , Gestational Age , Immunohistochemistry , Male , Octamer Transcription Factor-2/analysis , Octamer Transcription Factor-3/analysis , Testis/cytology , Testis/embryology
7.
Reproduction in Domestic Animals ; 46(1): 62-66, Apr 30, 2010.
Article in English | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP, SESSP-IBACERVO | ID: biblio-1066216

ABSTRACT

Previously, three distinct populations of putative primordial germ cells (PGCs), namely gonocytes, intermediate cells and pre-spermatogonia, have been described in the human foetal testis. According to our knowledge, these PGCs have not been studied in any other species. The aim of our study was to identify similar PGC populations in canine embryos. First, we develop a protocol for canine embryo isolation. Following our protocol, 15 canine embryos at 21–25 days of pregnancy were isolated by ovaryhysterectomy surgery. Our data indicate that dramatic changes occur in canine embryo development and PGCs specification between 21 to 25 days of gestation. At that moment, only two PGC populations with distinct morphology can be identified by histological analyses. Cell population 1 presented round nuclei with prominent nucleolus and a high nuclear to cytoplasm ratio, showing gonocyte morphology. Cell population 2 was often localized at the periphery of the testicular cords and presented typical features of PGC. Both germ cell populations were positively immunostained with anti-human OCT-4 antibody. However, at day 25, all cells of population 1 reacted positively with OCT-4, whereas in population 2, fewer cells were positive for this marker. These two PGCs populations present morphological features similar to gonocytes and intermediate cells from human foetal testis. It is expected that a population of pre-spermatogonia would be observed at later stages of canine foetus development. We also showed that anti-human OCT-4 antibody can be useful to identify canine PGC in vivo.


Subject(s)
Dogs , Germ Cells/growth & development , Germ Cells/ultrastructure , Embryonic Development/physiology , Embryonic Development/genetics , Germ Cells/immunology , Spermatogonia/growth & development , Spermatogonia/immunology
8.
Zygote ; 15(4): 295-306, 2007 Nov.
Article in English | MEDLINE | ID: mdl-17967209

ABSTRACT

In vitro-matured (IVM) bovine oocytes were activated with single and combined treatments of strontium (S), ionomycin (I) and 6-DMAP (D). Using oocytes IVM for 26 h, we observed that activation altered cell cycle kinetics (faster progression, MIII arrest, or direct transition from MII to pronuclear stage) when compared to in vitro fertilization. The effect of oocyte age on early parthenogenesis was assessed in oocytes IVM for 22, 26 and 30 h. Better results in pronuclear development were obtained in treatments ISD (81.7%) at 22 h; D (66.7%), IS (63.3%), ID (73.3%) and ISD (76.7%) at 26 h; and D (86.7%), IS (85.0%) and ID (78.3%) at 30 h. Higher cleavage occurred on ISD (80.0%) at 22 h; ID (83.3%) and ISD (91.7%) at 26 h; and I (86.7%), IS (90.0%), ID (85.0%) and ISD (95.0%) at 30 h. More blastocysts were achieved in ID (25.0%) and ISD (18.3%) at 22 h; and in ID at 26 h (45.0%) and 30 h (50.0%). We also observed that IS allowed higher haploid (77.4%) embryonic development, whilst ID was better for diploid (89.1%) development. It was concluded that association of S and D without I was not effective for blastocyst development; treatments using S were less influenced by oocyte age, but when S was associated with D there was a detrimental effect on aged oocytes; treatment ISD promoted higher activation and cleavage rates in young oocytes and ID protocol was the best for producing blastocysts.


Subject(s)
Adenine/analogs & derivatives , Ionomycin/pharmacology , Oocytes/drug effects , Parthenogenesis/drug effects , Strontium/pharmacology , Adenine/administration & dosage , Adenine/pharmacology , Animals , Blastocyst/cytology , Blastocyst/drug effects , Blastocyst/metabolism , Cattle , Cell Cycle/drug effects , Cell Nucleus/drug effects , Cellular Senescence , Chromatin/metabolism , Cleavage Stage, Ovum/cytology , Cleavage Stage, Ovum/drug effects , Cleavage Stage, Ovum/metabolism , Female , Fertilization in Vitro , In Vitro Techniques , Ionomycin/administration & dosage , Oocytes/cytology , Oocytes/metabolism , Strontium/administration & dosage , Tubulin/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...