Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Article in English | MEDLINE | ID: mdl-37906330

ABSTRACT

Over the last few decades, the global rise in energy demand has prompted researchers to investigate the energy requirements from alternative green fuels apart from the conventional fossil fuels, due to the surge in CO2 emission levels. In this context, the global demand for hydrogen is anticipated to extend by 4-5% in the next 5 years. Different production technologies like gasification of coal, partial oxidation of hydrocarbons, and reforming of natural gas are used to obtain high yields of hydrogen. In present time, 96% of hydrogen is produced by the conventional methods, and the remaining 4% is produced by the electrolysis of water. Photo-electrochemical (PEC) water splitting is a promising and progressive solar-to-hydrogen pathway with high conversion efficiency at low operating temperatures with substrate electrodes such as fluorine-doped tin oxide (FTO), incorporated with photocatalytic nanomaterials. Several semiconducting nanomaterials such as carbon nanotubes, TiO2, ZnO, graphene, alpha-Fe2O3, WO3, metal nitrides, metal phosphides, cadmium-based quantum dots, and rods have been reported for PEC water splitting. The design of photocatalytic electrodes plays a crucial role for efficient PEC water splitting process. By modifying the composition and morphology of photocatalytic nanomaterials, the overall solar-to-hydrogen (STH) energy conversion efficiency can be improved by optimizing their opto-electronic properties. The present article highlights the recent advancements in cleaner and effective photocatalysts for producing high yields of hydrogen via PEC water splitting.

2.
J Colloid Interface Sci ; 378(1): 21-9, 2012 Jul 15.
Article in English | MEDLINE | ID: mdl-22578831

ABSTRACT

A novel theoretical model based on superposition of core and shell band-gaps, termed as SQCE model, is developed and reported here, which enables one to estimate the shell thickness in a core-shell quantum dot (QD), which is critically important in deciding its optical and electronic properties. We apply the model to two experimental core-shell QD systems, CdSe-CdS and CdSe-ZnS, which we synthesize by microemulsion method. We synthesize and study two series of samples, R and S to study the optical properties. The core size is varied in the R-series (by varying water-to-surfactant ratio, R) whereas the shell thickness is varied in the S-series (by varying the shell-to-core precursor molar ratio, S). The core and core-shell QDs from R-series and S-series are characterized for particle size, shape and crystallographic information. The shell thickness for all core-shell QD samples is estimated by SQCE model, and experimentally measured with TEM and SAXS. A close match is observed between experimental values and model predictions, thus validating the model. Further, the optimum shell thickness (corresponding to maximum quantum yield) values for CdS and ZnS over a 4.26 nm CdSe core have been estimated as 0.585 nm and 0.689 nm, respectively, from the SQCE model. The SQCE model developed in this work is applicable to other core-shell quantum dots also, such as CdTe-CdS, CdTe-CdSe and CdS-ZnS, and will serve as a useful complement to experimental measurement.


Subject(s)
Cadmium Compounds/chemistry , Models, Chemical , Quantum Dots , Selenium Compounds/chemistry , Sulfides/chemistry , Zinc Compounds/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...