Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 70
Filter
1.
Mult Scler Relat Disord ; 86: 105520, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38582026

ABSTRACT

BACKGROUND: Previous studies have shown that thalamic and hippocampal neurodegeneration is associated with clinical decline in Multiple Sclerosis (MS). However, contributions of the specific thalamic nuclei and hippocampal subfields require further examination. OBJECTIVE: Using 7 Tesla (7T) magnetic resonance imaging (MRI), we investigated the cross-sectional associations between functionally grouped thalamic nuclei and hippocampal subfields volumes and T1 relaxation times (T1-RT) and subsequent clinical outcomes in MS. METHODS: High-resolution T1-weighted and T2-weighted images were acquired at 7T (n=31), preprocessed, and segmented using the Thalamus Optimized Multi Atlas Segmentation (THOMAS, for thalamic nuclei) and the Automatic Segmentation of Hippocampal Subfields (ASHS, for hippocampal subfields) packages. We calculated Pearson correlations between hippocampal subfields and thalamic nuclei volumes and T1-RT and subsequent multi-modal rater-determined and patient-reported clinical outcomes (∼2.5 years after imaging acquisition), correcting for confounders and multiple tests. RESULTS: Smaller volume bilaterally in the anterior thalamus region correlated with worse performance in gait function, as measured by the Patient Determined Disease Steps (PDDS). Additionally, larger volume in most functional groups of thalamic nuclei correlated with better visual information processing and cognitive function, as measured by the Symbol Digit Modalities Test (SDMT). In bilateral medial and left posterior thalamic regions, there was an inverse association between volumes and T1-RT, potentially indicating higher tissue degeneration in these regions. We also observed marginal associations between the right hippocampal subfields (both volumes and T1-RT) and subsequent clinical outcomes, though they did not survive correction for multiple testing. CONCLUSION: Ultrahigh field MRI identified markers of structural damage in the thalamic nuclei associated with subsequently worse clinical outcomes in individuals with MS. Longitudinal studies will enable better understanding of the role of microstructural integrity in these brain regions in influencing MS outcomes.


Subject(s)
Hippocampus , Magnetic Resonance Imaging , Multiple Sclerosis , Thalamic Nuclei , Humans , Hippocampus/diagnostic imaging , Hippocampus/pathology , Male , Female , Adult , Thalamic Nuclei/diagnostic imaging , Thalamic Nuclei/pathology , Multiple Sclerosis/diagnostic imaging , Multiple Sclerosis/pathology , Middle Aged , Cross-Sectional Studies
2.
Neurol Neuroimmunol Neuroinflamm ; 11(3): e200222, 2024 May.
Article in English | MEDLINE | ID: mdl-38635941

ABSTRACT

BACKGROUND AND OBJECTIVES: Thalamic atrophy can be used as a proxy for neurodegeneration in multiple sclerosis (MS). Some data point toward thalamic nuclei that could be affected more than others. However, the dynamic of their changes during MS evolution and the mechanisms driving their differential alterations are still uncertain. METHODS: We paired a large cohort of 1,123 patients with MS with the same number of healthy controls, all scanned with conventional 3D-T1 MRI. To highlight the main atrophic regions at the thalamic nuclei level, we validated a segmentation strategy consisting of deep learning-based synthesis of sequences, which were used for automatic multiatlas segmentation. Then, through a lifespan-based approach, we could model the dynamics of the 4 main thalamic nuclei groups. RESULTS: All analyses converged toward a higher rate of atrophy for the posterior and medial groups compared with the anterior and lateral groups. We also demonstrated that focal MS white matter lesions were associated with atrophy of groups of nuclei when specifically located within the associated thalamocortical projections. The volumes of the most affected posterior group, but also of the anterior group, were better associated with clinical disability than the volume of the whole thalamus. DISCUSSION: These findings point toward the thalamic nuclei adjacent to the third ventricle as more susceptible to neurodegeneration during the entire course of MS through potentiation of disconnection effects by regional factors. Because this information can be obtained even from standard T1-weighted MRI, this paves the way toward such an approach for future monitoring of patients with MS.


Subject(s)
Multiple Sclerosis , Humans , Multiple Sclerosis/pathology , Thalamic Nuclei/diagnostic imaging , Thalamus/diagnostic imaging , Thalamus/pathology , Magnetic Resonance Imaging , Atrophy/pathology
3.
medRxiv ; 2024 Mar 08.
Article in English | MEDLINE | ID: mdl-38496426

ABSTRACT

Thalamic nuclei have been implicated in neurodegenerative and neuropsychiatric disorders. Normative models for thalamic nuclear volumes have not been proposed thus far. The aim of this work was to establish normative models of thalamic nuclear volumes and subsequently investigate changes in thalamic nuclei in cognitive and psychiatric disorders. Volumes of the bilateral thalami and 12 nuclear regions were generated from T1 MRI data using a novel segmentation method (HIPS-THOMAS) in healthy control subjects (n=2374) and non-control subjects (n=695) with early and late mild cognitive impairment (EMCI, LMCI), Alzheimer's disease (AD), Early psychosis and Schizophrenia, Bipolar disorder, and Attention deficit hyperactivity disorder. Three different normative modelling methods were evaluated while controlling for sex, intracranial volume, and site. Z-scores and extreme z-score deviations were calculated and compared across phenotypes. GAMLSS models performed the best. Statistically significant shifts in z-score distributions consistent with atrophy were observed for most phenotypes. Shifts of progressively increasing magnitude were observed bilaterally from EMCI to AD with larger shifts in the left thalamic regions. Heterogeneous shifts were observed in psychiatric diagnoses with a predilection for the right thalamic regions. Here we present the first normative models of thalamic nuclear volumes and highlight their utility in evaluating heterogenous disorders such as Schizophrenia.

4.
Brain Struct Funct ; 229(5): 1087-1101, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38546872

ABSTRACT

Accurate segmentation of thalamic nuclei, crucial for understanding their role in healthy cognition and in pathologies, is challenging to achieve on standard T1-weighted (T1w) magnetic resonance imaging (MRI) due to poor image contrast. White-matter-nulled (WMn) MRI sequences improve intrathalamic contrast but are not part of clinical protocols or extant databases. In this study, we introduce histogram-based polynomial synthesis (HIPS), a fast preprocessing transform step that synthesizes WMn-like image contrast from standard T1w MRI using a polynomial approximation for intensity transformation. HIPS was incorporated into THalamus Optimized Multi-Atlas Segmentation (THOMAS) pipeline, a method developed and optimized for WMn MRI. HIPS-THOMAS was compared to a convolutional neural network (CNN)-based segmentation method and THOMAS modified for the use of T1w images (T1w-THOMAS). The robustness and accuracy of the three methods were tested across different image contrasts (MPRAGE, SPGR, and MP2RAGE), scanner manufacturers (PHILIPS, GE, and Siemens), and field strengths (3 T and 7 T). HIPS-transformed images improved intra-thalamic contrast and thalamic boundaries, and HIPS-THOMAS yielded significantly higher mean Dice coefficients and reduced volume errors compared to both the CNN method and T1w-THOMAS. Finally, all three methods were compared using the frequently travelling human phantom MRI dataset for inter- and intra-scanner variability, with HIPS displaying the least inter-scanner variability and performing comparably with T1w-THOMAS for intra-scanner variability. In conclusion, our findings highlight the efficacy and robustness of HIPS in enhancing thalamic nuclei segmentation from standard T1w MRI.


Subject(s)
Image Processing, Computer-Assisted , Magnetic Resonance Imaging , Thalamic Nuclei , Humans , Magnetic Resonance Imaging/methods , Thalamic Nuclei/diagnostic imaging , Image Processing, Computer-Assisted/methods , Female , Neural Networks, Computer , Male , Adult , White Matter/diagnostic imaging
5.
medRxiv ; 2024 Feb 01.
Article in English | MEDLINE | ID: mdl-38352493

ABSTRACT

Accurate segmentation of thalamic nuclei, crucial for understanding their role in healthy cognition and in pathologies, is challenging to achieve on standard T1-weighted (T1w) magnetic resonance imaging (MRI) due to poor image contrast. White-matter-nulled (WMn) MRI sequences improve intrathalamic contrast but are not part of clinical protocols or extant databases. In this study, we introduce histogram-based polynomial synthesis (HIPS), a fast preprocessing transform step that synthesizes WMn-like image contrast from standard T1w MRI using a polynomial approximation for intensity transformation. HIPS was incorporated into THalamus Optimized Multi-Atlas Segmentation (THOMAS) pipeline, a method developed and optimized for WMn MRI. HIPS-THOMAS was compared to a convolutional neural network (CNN)-based segmentation method and THOMAS modified for T1w images (T1w-THOMAS). The robustness and accuracy of the three methods were tested across different image contrasts (MPRAGE, SPGR, and MP2RAGE), scanner manufacturers (PHILIPS, GE, and Siemens), and field strengths (3T and 7T). HIPS-transformed images improved intra-thalamic contrast and thalamic boundaries, and HIPS-THOMAS yielded significantly higher mean Dice coefficients and reduced volume errors compared to both the CNN method and T1w-THOMAS. Finally, all three methods were compared using the frequently travelling human phantom MRI dataset for inter- and intra-scanner variability, with HIPS displaying the least inter-scanner variability and performing comparably with T1w-THOMAS for intra-scanner variability. In conclusion, our findings highlight the efficacy and robustness of HIPS in enhancing thalamic nuclei segmentation from standard T1w MRI.

6.
Curr Res Neurobiol ; 4: 100084, 2023.
Article in English | MEDLINE | ID: mdl-37397807

ABSTRACT

Alzheimer's disease (AD) is the most common cause of dementia worldwide. Increasing evidence points to the thalamus as an important hub in the clinical symptomatology of the disease, with the 'limbic thalamus' been described as especially vulnerable. In this work, we examined thalamic atrophy in early-onset AD (EOAD) and late-onset AD (LOAD) compared to young and old healthy controls (YHC and OHC, respectively) using a recently developed cutting-edge thalamic nuclei segmentation method. A deep learning variant of Thalamus Optimized Multi Atlas Segmentation (THOMAS) was used to parcellate 11 thalamic nuclei per hemisphere from T1-weighted MRI in 88 biomarker-confirmed AD patients (49 EOAD and 39 LOAD) and 58 healthy controls (41 YHC and 17 OHC) with normal AD biomarkers. Nuclei volumes were compared among groups using MANCOVA. Further, Pearson's correlation coefficient was computed between thalamic nuclear volume and cortical-subcortical regions, CSF tau levels, and neuropsychological scores. The results showed widespread thalamic nuclei atrophy in EOAD and LOAD compared to their respective healthy control groups, with EOAD showing additional atrophy in the centromedian and ventral lateral posterior nuclei compared to YHC. In EOAD, increased thalamic nuclei atrophy was associated with posterior parietal atrophy and worse visuospatial abilities, while LOAD thalamic nuclei atrophy was preferentially associated with medial temporal atrophy and worse episodic memory and executive function. Our findings suggest that thalamic nuclei may be differentially affected in AD according to the age at symptoms onset, associated with specific cortical-subcortical regions, CSF total tau and cognition.

7.
Ann Clin Transl Neurol ; 10(7): 1254-1259, 2023 07.
Article in English | MEDLINE | ID: mdl-37231611

ABSTRACT

Deep brain stimulation (DBS) is a promising treatment for drug-refractory epilepsies (DRE) when targeting the anterior nuclei of thalamus (ANT). However, targeting other thalamic nuclei, such as the pulvinar, shows therapeutic promise. Our pioneering case study presents the application of ambulatory seizure monitoring using spectral fingerprinting (12.15-17.15 Hz) recorded through Medtronic Percept DBS implanted bilaterally in the medial pulvinar thalami. This technology offers unprecedented opportunities for real-time monitoring of seizure burden and thalamocortical network modulation for effective seizure reduction in patients with bilateral mesial temporal and temporal plus epilepsies that are not suitable for resection.


Subject(s)
Deep Brain Stimulation , Epilepsy , Pulvinar , Humans , Electrodes, Implanted , Epilepsy/therapy , Seizures/therapy
8.
Hum Brain Mapp ; 44(2): 612-628, 2023 02 01.
Article in English | MEDLINE | ID: mdl-36181510

ABSTRACT

Specific thalamic nuclei are implicated in healthy aging and age-related neurodegenerative diseases. However, few methods are available for robust automated segmentation of thalamic nuclei. The threefold aims of this study were to validate the use of a modified thalamic nuclei segmentation method on standard T1 MRI data, to apply this method to quantify age-related volume declines, and to test functional meaningfulness by predicting performance on motor testing. A modified version of THalamus Optimized Multi-Atlas Segmentation (THOMAS) generated 22 unilateral thalamic nuclei. For validation, we compared nuclear volumes obtained from THOMAS parcellation of white-matter-nulled (WMn) MRI data to T1 MRI data in 45 participants. To examine the effects of age/sex on thalamic nuclear volumes, T1 MRI available from a second data set of 121 men and 117 women, ages 20-86 years, were segmented using THOMAS. To test for functional ramifications, composite regions and constituent nuclei were correlated with Grooved Pegboard test scores. THOMAS on standard T1 data showed significant quantitative agreement with THOMAS from WMn data, especially for larger nuclei. Sex differences revealing larger volumes in men than women were accounted for by adjustment with supratentorial intracranial volume (sICV). Significant sICV-adjusted correlations between age and thalamic nuclear volumes were detected in 20 of the 22 unilateral nuclei and whole thalamus. Composite Posterior and Ventral regions and Ventral Anterior/Pulvinar nuclei correlated selectively with higher scores from the eye-hand coordination task. These results support the use of THOMAS for standard T1-weighted data as adequately robust for thalamic nuclear parcellation.


Subject(s)
Thalamic Nuclei , White Matter , Humans , Male , Female , Young Adult , Adult , Middle Aged , Aged , Aged, 80 and over , Thalamic Nuclei/diagnostic imaging , Thalamus , Aging , Magnetic Resonance Imaging/methods
9.
Mult Scler ; 29(2): 295-300, 2023 02.
Article in English | MEDLINE | ID: mdl-35959722

ABSTRACT

OBJECTIVES: Investigating differential vulnerability of thalamic nuclei in multiple sclerosis (MS). METHODS: In a secondary analysis of prospectively collected datasets, we pooled 136 patients with MS or clinically isolated syndrome and 71 healthy controls all scanned with conventional 3D-T1 and white-matter-nulled magnetization-prepared rapid gradient echo (WMn-MPRAGE) and tested for cognitive performance. T1-based thalamic segmentation was compared with the reference WMn-MPRAGE method. Volumes of thalamic nuclei were compared according to clinical phenotypes and cognitive profile. RESULTS: T1- and WMn-MPRAGE provided comparable segmentations (0.84 ± 0.13 < volume-similarity-index < 0.95 ± 0.03). Medial and posterior thalamic groups were significantly more affected than anterior and lateral groups. Cognitive impairment related to volume loss of the anterior group. CONCLUSION: Thalamic nuclei closest to the third ventricle are more affected, with cognitive consequences.


Subject(s)
Multiple Sclerosis , White Matter , Humans , Multiple Sclerosis/diagnostic imaging , Thalamic Nuclei/diagnostic imaging , Thalamus/diagnostic imaging , Magnetic Resonance Imaging/methods , White Matter/diagnostic imaging
10.
Neuroinformatics ; 20(3): 651-664, 2022 07.
Article in English | MEDLINE | ID: mdl-34626333

ABSTRACT

Thalamic nuclei have been implicated in several neurological diseases. Thalamic nuclei parcellation from structural MRI is challenging due to poor intra-thalamic nuclear contrast while methods based on diffusion and functional MRI are affected by limited spatial resolution and image distortion. Existing multi-atlas based techniques are often computationally intensive and time-consuming. In this work, we propose a 3D convolutional neural network (CNN) based framework for thalamic nuclei parcellation using T1-weighted Magnetization Prepared Rapid Gradient Echo (MPRAGE) images. Transformation of images to an efficient representation has been proposed to improve the performance of subsequent classification tasks especially when working with limited labeled data. We investigate this by transforming the MPRAGE images to White-Matter-nulled MPRAGE (WMn-MPRAGE) contrast, previously shown to exhibit good intra-thalamic nuclear contrast, prior to the segmentation step. We trained two 3D segmentation frameworks using MPRAGE images (n = 35 subjects): (a) a native contrast segmentation (NCS) on MPRAGE images and (b) a synthesized contrast segmentation (SCS) where synthesized WMn-MPRAGE representation generated by a contrast synthesis CNN were used. Thalamic nuclei labels were generated using THOMAS, a multi-atlas segmentation technique proposed for WMn-MPRAGE images. The segmentation accuracy and clinical utility were evaluated on a healthy cohort (n = 12) and a cohort (n = 45) comprising of healthy subjects and patients with alcohol use disorder (AUD), respectively. Both the segmentation CNNs yielded comparable performances on most thalamic nuclei with Dice scores greater than 0.84 for larger nuclei and at least 0.7 for smaller nuclei. However, for some nuclei, the SCS CNN yielded significant improvements in Dice scores (medial geniculate nucleus, P = 0.003, centromedian nucleus, P = 0.01) and percent volume difference (ventral anterior, P = 0.001, ventral posterior lateral, P = 0.01) over NCS. In the AUD cohort, the SCS CNN demonstrated a significant atrophy in ventral lateral posterior nucleus in AUD patients compared to healthy age-matched controls (P = 0.01), agreeing with previous studies on thalamic atrophy in alcoholism, whereas the NCS CNN showed spurious atrophy of the ventral posterior lateral nucleus. CNN-based segmentation of thalamic nuclei provides a fast and automated technique for thalamic nuclei prediction in MPRAGE images. The transformation of images to an efficient representation, such as WMn-MPRAGE, can provide further improvements in segmentation performance.


Subject(s)
Magnetic Resonance Imaging , White Matter , Atrophy , Humans , Image Processing, Computer-Assisted/methods , Magnetic Resonance Imaging/methods , Neural Networks, Computer , Thalamic Nuclei/diagnostic imaging
11.
Neuroimage ; 245: 118636, 2021 12 15.
Article in English | MEDLINE | ID: mdl-34637904

ABSTRACT

The process of storing recently encoded episodic mnestic traces so that they are available for subsequent retrieval is accompanied by specific brain functional connectivity (FC) changes. In this fMRI study, we examined the early processing of memories in twenty-eight healthy participants performing an episodic memory task interposed between two resting state sessions. Memory performance was assessed through a forced-choice recognition test after the scanning sessions. We investigated resting state system configuration changes via Independent Component Analysis by cross-modeling baseline resting state spatial maps onto the post-encoding resting state, and post-encoding resting state spatial maps onto baseline. We identified both persistent and plastic components of the overall brain functional configuration between baseline and post-encoding. While FC patterns within executive, default mode, and cerebellar circuits persisted from baseline to post-encoding, FC within the visual circuit changed. A significant session × performance interaction characterized medial temporal lobe and prefrontal cortex FC with the visual circuit, as well as thalamic FC within the executive control system. Findings reveal early-stage FC changes at the system-level subsequent to a learning experience and associated with inter-individual variation in memory performance.


Subject(s)
Brain Mapping/methods , Learning , Magnetic Resonance Imaging , Memory, Episodic , Neural Pathways/diagnostic imaging , Adult , Female , Healthy Volunteers , Humans , Male
12.
Sci Data ; 8(1): 275, 2021 10 28.
Article in English | MEDLINE | ID: mdl-34711852

ABSTRACT

Thalamic nuclei play critical roles in regulation of neurological functions like sleep and wakefulness. They are increasingly implicated in neurodegenerative and neurological diseases such as multiple sclerosis and essential tremor. However, segmentation of thalamic nuclei is difficult due to their poor visibility in conventional MRI scans. Sophisticated methods have been proposed which require specialized MRI acquisitions and complex post processing. There are few high spatial resolution (1 mm3 or higher) in vivo MRI thalamic atlases available currently. The goal of this work is the development of an in vivo MRI-based structural thalamic atlas at 0.7 × 0.7 × 0.5 mm resolution based on manual segmentation of 9 healthy subjects using the Morel atlas as a guide. Using data analysis from healthy subjects as well as patients with multiple-sclerosis and essential tremor and at 3T and 7T MRI, we demonstrate the utility of this atlas to provide fast and accurate segmentation of thalamic nuclei when only conventional T1 weighted images are available.


Subject(s)
Brain Mapping , Magnetic Resonance Imaging , Thalamic Nuclei/diagnostic imaging , Adult , Essential Tremor , Female , Humans , Image Processing, Computer-Assisted , Male , Multiple Sclerosis , Young Adult
13.
J Alzheimers Dis ; 82(1): 361-371, 2021.
Article in English | MEDLINE | ID: mdl-34024824

ABSTRACT

BACKGROUND: Increasing evidence suggests that thalamic nuclei may atrophy in Alzheimer's disease (AD). We hypothesized that there will be significant atrophy of limbic thalamic nuclei associated with declining memory and cognition across the AD continuum. OBJECTIVE: The objective of this work was to characterize volume differences in thalamic nuclei in subjects with early and late mild cognitive impairment (MCI) as well as AD when compared to healthy control (HC) subjects using a novel MRI-based thalamic segmentation technique (THOMAS). METHODS: MPRAGE data from the ADNI database were used in this study (n = 540). Healthy control (n = 125), early MCI (n = 212), late MCI (n = 114), and AD subjects (n = 89) were selected, and their MRI data were parcellated to determine the volumes of 11 thalamic nuclei for each subject. Volumes across the different clinical subgroups were compared using ANCOVA. RESULTS: There were significant differences in thalamic nuclei volumes between HC, late MCI, and AD subjects. The anteroventral, mediodorsal, pulvinar, medial geniculate, and centromedian nuclei were significantly smaller in subjects with late MCI and AD when compared to HC subjects. Furthermore, the mediodorsal, pulvinar, and medial geniculate nuclei were significantly smaller in early MCI when compared to HC subjects. CONCLUSION: This work highlights nucleus specific atrophy within the thalamus in subjects with early and late MCI and AD. This is consistent with the hypothesis that memory and cognitive changes in AD are mediated by damage to a large-scale integrated neural network that extends beyond the medial temporal lobes.


Subject(s)
Alzheimer Disease/pathology , Cognitive Dysfunction/pathology , Prodromal Symptoms , Thalamic Nuclei/pathology , Aged , Atrophy/pathology , Cognition/physiology , Humans , Magnetic Resonance Imaging , Male , Memory/physiology
14.
Cerebellum ; 20(6): 823-835, 2021 Dec.
Article in English | MEDLINE | ID: mdl-33655376

ABSTRACT

Alcohol use disorder (AUD) is widely associated with cerebellar dysfunction and altered cerebro-cerebellar functional connectivity (FC) that lead to cognitive impairments. Evidence for this association comes from resting-state functional magnetic resonance imaging (rsfMRI) studies that assess time-averaged measures of FC across the duration of a typical scan. This approach, however, precludes the assessment of potentially FC dynamics happening at faster timescales. In this study, using rsfMRI data, we aim at exploring cerebro-cerebellar FC dynamics in AUD patients (N = 18) and age- and sex-matched controls (N = 18). In particular, we quantified group-level differences in the temporal variability of FC between the posterior cerebellum and large-scale cognitive systems, and we investigated the role of the cerebellum in large-scale brain dynamics in terms of the temporal flexibility and integration of its regions. We found that, relative to controls, the AUD group exhibited significantly greater FC variability between the cerebellum and both the frontoparietal executive control (F1,31 = 7.01, p(FDR) = 0.028) and ventral attention (F1,31 = 7.35, p(FDR) = 0.028) networks. Moreover, the AUD group exhibited significantly less flexibility (F1,31 = 8.61, p(FDR) = 0.028) and greater integration (F1,31 = 9.11, p(FDR) = 0.028) in the cerebellum. Finally, in an exploratory analysis, we found distributed changes in the dynamics of canonical large-scale networks in AUD. Overall, this study brings evidence of AUD-related alterations in dynamic FC within major cerebro-cerebellar networks. This pattern has implications for explaining the development and maintenance of this disorder and improving our understating of the cerebellum's involvement in addiction.


Subject(s)
Alcoholism , Cerebellum , Magnetic Resonance Imaging , Alcoholism/diagnostic imaging , Brain/diagnostic imaging , Cerebellum/diagnostic imaging , Executive Function , Humans
15.
Drug Alcohol Depend ; 220: 108509, 2021 03 01.
Article in English | MEDLINE | ID: mdl-33453503

ABSTRACT

The extant literature supports the involvement of the thalamus in the cognitive and motor impairment associated with chronic alcohol consumption, but clear structure/function relationships remain elusive. Alcohol effects on specific nuclei rather than the entire thalamus may provide the basis for differential cognitive and motor decline in Alcohol Use Disorder (AUD). This functional MRI (fMRI) study was conducted in 23 abstinent individuals with AUD and 27 healthy controls to test the hypothesis that functional connectivity between anterior thalamus and hippocampus would be compromised in those with an AUD diagnosis and related to mnemonic deficits. Functional connectivity between 7 thalamic structures [5 thalamic nuclei: anterior ventral (AV), mediodorsal (MD), pulvinar (Pul), ventral lateral posterior (VLP), and ventral posterior lateral (VPL); ventral thalamus; the entire thalamus] and 14 "functional regions" was evaluated. Relative to controls, the AUD group exhibited different VPL-based functional connectivity: an anticorrelation between VPL and a bilateral middle temporal lobe region observed in controls became a positive correlation in the AUD group; an anticorrelation between the VPL and the cerebellum was stronger in the AUD than control group. AUD-associated altered connectivity between anterior thalamus and hippocampus as a substrate of memory compromise was not supported; instead, connectivity differences from controls selective to VPL and cerebellum demonstrated a relationship with impaired balance. These preliminary findings support substructure-level evaluation in future studies focused on discerning the role of the thalamus in AUD-associated cognitive and motor deficits.


Subject(s)
Alcohol Abstinence , Alcoholism/diagnostic imaging , Cerebellum/diagnostic imaging , Neural Pathways/diagnostic imaging , Thalamus/diagnostic imaging , Adult , Case-Control Studies , Cognitive Dysfunction/diagnostic imaging , Female , Hippocampus/diagnostic imaging , Humans , Magnetic Resonance Imaging , Male , Middle Aged
16.
Magn Reson Med ; 85(5): 2781-2790, 2021 05.
Article in English | MEDLINE | ID: mdl-33270943

ABSTRACT

PURPOSE: Thalamic nuclei are largely invisible in conventional MRI due to poor contrast. Thalamus Optimized Multi-Atlas Segmentation (THOMAS) provides automatic segmentation of 12 thalamic nuclei using white-matter-nulled (WMn) Magnetization Prepared Rapid Gradient Echo (MPRAGE) sequence at 7T, but increases overall scan duration. Routinely acquired, bias-corrected Magnetization Prepared 2 Rapid Gradient Echo (MP2RAGE) sequence yields superior tissue contrast and quantitative T1 maps. Application of THOMAS to MP2RAGE has been investigated in this study. METHODS: Eight healthy volunteers and five pediatric-onset multiple sclerosis patients were recruited at Children's Hospital of Philadelphia and scanned at Siemens 7T with WMn-MPRAGE and multi-echo-MP2RAGE (ME-MP2RAGE) sequences. White-matter-nulled contrast was synthesized (MP2-SYN) from T1 maps from ME-MP2RAGE sequence. Thalamic nuclei were segmented using THOMAS joint label fusion algorithm from WMn-MPRAGE and MP2-SYN datasets. THOMAS pipeline was modified to use majority voting to segment bias corrected T1-weighted uniform (MP2-UNI) images. Thalamic nuclei from MP2-SYN and MP2-UNI images were evaluated against corresponding nuclei obtained from WMn-MPRAGE images using dice coefficients, volume similarity indices (VSIs) and distance between centroids. RESULTS: For MP2-SYN, dice > 0.85 and VSI > 0.95 was achieved for five larger nuclei and dice > 0.6 and VSI > 0.7 was achieved for seven smaller nuclei. The dice and VSI were slightly higher, whereas the distance between centroids were smaller for MP2-SYN compared to MP2-UNI, indicating improved performance using the MP2-SYN image. CONCLUSIONS: THOMAS algorithm can successfully segment thalamic nuclei in MP2RAGE images with essentially equivalent quality as WMn-MPRAGE, widening its applicability in studies focused on thalamic involvement in aging and disease.


Subject(s)
Image Processing, Computer-Assisted , White Matter , Algorithms , Brain , Child , Humans , Magnetic Resonance Imaging , Thalamic Nuclei/diagnostic imaging
17.
Magn Reson Imaging ; 73: 45-54, 2020 11.
Article in English | MEDLINE | ID: mdl-32828985

ABSTRACT

PURPOSE: To develop a fast and accurate convolutional neural network based method for segmentation of thalamic nuclei. METHODS: A cascaded multi-planar scheme with a modified residual U-Net architecture was used to segment thalamic nuclei on conventional and white-matter-nulled (WMn) magnetization prepared rapid gradient echo (MPRAGE) data. A single network was optimized to work with images from healthy controls and patients with multiple sclerosis (MS) and essential tremor (ET), acquired at both 3 T and 7 T field strengths. WMn-MPRAGE images were manually delineated by a trained neuroradiologist using the Morel histological atlas as a guide to generate reference ground truth labels. Dice similarity coefficient and volume similarity index (VSI) were used to evaluate performance. Clinical utility was demonstrated by applying this method to study the effect of MS on thalamic nuclei atrophy. RESULTS: Segmentation of each thalamus into twelve nuclei was achieved in under a minute. For 7 T WMn-MPRAGE, the proposed method outperforms current state-of-the-art on patients with ET with statistically significant improvements in Dice for five nuclei (increase in the range of 0.05-0.18) and VSI for four nuclei (increase in the range of 0.05-0.19), while performing comparably for healthy and MS subjects. Dice and VSI achieved using 7 T WMn-MPRAGE data are comparable to those using 3 T WMn-MPRAGE data. For conventional MPRAGE, the proposed method shows a statistically significant Dice improvement in the range of 0.14-0.63 over FreeSurfer for all nuclei and disease types. Effect of noise on network performance shows robustness to images with SNR as low as half the baseline SNR. Atrophy of four thalamic nuclei and whole thalamus was observed for MS patients compared to healthy control subjects, after controlling for the effect of parallel imaging, intracranial volume, gender, and age (p < 0.004). CONCLUSION: The proposed segmentation method is fast, accurate, performs well across disease types and field strengths, and shows great potential for improving our understanding of thalamic nuclei involvement in neurological diseases.


Subject(s)
Image Processing, Computer-Assisted/methods , Magnetic Resonance Imaging , Neural Networks, Computer , Thalamic Nuclei/diagnostic imaging , Automation , Case-Control Studies , Essential Tremor/diagnostic imaging , Essential Tremor/pathology , Female , Humans , Multiple Sclerosis/diagnostic imaging , Multiple Sclerosis/pathology , Thalamic Nuclei/pathology , Young Adult
18.
Hum Brain Mapp ; 41(17): 4769-4788, 2020 12.
Article in English | MEDLINE | ID: mdl-32762005

ABSTRACT

Magnetic resonance-guided focused ultrasound (MRgFUS) ablation of the ventral intermediate (Vim) thalamic nucleus is an incisionless treatment for essential tremor (ET). The standard initial targeting method uses an approximate, atlas-based stereotactic approach. We developed a new patient-specific targeting method to identify an individual's Vim and the optimal MRgFUS target region therein for suppression of tremor. In this retrospective study of 14 ET patients treated with MRgFUS, we investigated the ability of WMnMPRAGE, a highly sensitive and robust sequence for imaging gray matter-white matter contrast, to identify the Vim, FUS ablation, and a clinically efficacious region within the Vim in individual patients. We found that WMnMPRAGE can directly visualize the Vim in ET patients, segmenting this nucleus using manual or automated segmentation capabilities developed by our group. WMnMPRAGE also delineated the ablation's core and penumbra, and showed that all patients' ablation cores lay primarily within their Vim segmentations. We found no significant correlations between standard ablation features (e.g., ablation volume, Vim-ablation overlap) and 1-month post-treatment clinical outcome. We then defined a group-based probabilistic target, which was nonlinearly warped to individual brains; this target was located within the Vim for all patients. The overlaps between this target and patient ablation cores correlated significantly with 1-month clinical outcome (r = -.57, p = .03), in contrast to the standard target (r = -.23, p = .44). We conclude that WMnMPRAGE is a highly sensitive sequence for segmenting Vim and ablation boundaries in individual patients, allowing us to find a novel tremor-associated center within Vim and potentially improving MRgFUS treatment for ET.


Subject(s)
Essential Tremor/surgery , High-Intensity Focused Ultrasound Ablation , Image Interpretation, Computer-Assisted/methods , Magnetic Resonance Imaging/methods , Ventral Thalamic Nuclei/diagnostic imaging , Ventral Thalamic Nuclei/surgery , Aged , Aged, 80 and over , Female , Humans , Image Interpretation, Computer-Assisted/standards , Magnetic Resonance Imaging/standards , Male , Outcome Assessment, Health Care , Surgery, Computer-Assisted
19.
Mov Disord Clin Pract ; 7(5): 521-530, 2020 Jul.
Article in English | MEDLINE | ID: mdl-32626797

ABSTRACT

BACKGROUND: Literature on asleep deep brain stimulation (DBS) of the ventralis intermedius (Vim) nucleus in essential tremor is relatively sparse. Furthermore, controversy exists as to whether indirect ("consensus" or "atlas-based") targeting of the Vim requires physiologic adjustment for effective clinical outcomes in DBS surgery. OBJECTIVES: The objective of this study was to evaluate the clinical results of asleep Vim DBS using indirect coordinates and real-time interventional magnetic resonance imaging guidance. METHODS: Retrospective review of a prospectively collected database was performed to identify patients with essential tremor undergoing asleep Vim DBS using interventional magnetic resonance imaging guidance. Stereotactic and clinical outcomes were abstracted and analyzed using descriptive statistics. RESULTS: A total of 12 consecutive patients were identified, all of whom were available for 6-month clinical follow-up. Stereotactic (radial) error was 0.5 ± 0.2 mm on the left and 0.5 ± 0.3 mm on the right. Fahn-Tolosa-Marin tremor scores in the treated limb(s) decreased by 71.2% ± 31.0% (P = 0.0088), The Essential Tremor Rating Assessment Scale activities of daily living improved by 74.9% ± 23.7% (P < 0.0001), and The Essential Tremor Rating Assessment Scale performance improved by 64.3 ± 16.2% (P = 0.0004). Surgical complications were mild and generally transient. Stimulation-related side effects were similar to those reported in historical series of awake Vim DBS. CONCLUSIONS: Asleep Vim DBS using indirect targeting and interventional magnetic resonance imaging-guided placement is safe and effective, with 6-month clinical results similar to those achieved with awake placement. These data support the use of asleep surgery in essential tremor and represent a baseline for comparison with future studies using more advanced targeting techniques.

20.
Brain Struct Funct ; 225(5): 1631-1642, 2020 Jun.
Article in English | MEDLINE | ID: mdl-32440784

ABSTRACT

The thalamus consists of several histologically and functionally distinct nuclei increasingly implicated in brain pathology and important for treatment, motivating the need for development of fast and accurate thalamic parcellation. The contrast between thalamic nuclei as well as between the thalamus and surrounding tissues is poor in T1- and T2-weighted magnetic resonance imaging (MRI), inhibiting efforts to date to segment the thalamus using standard clinical MRI. Automatic parcellation techniques have been developed to leverage thalamic features better captured by advanced MRI methods, including magnetization prepared rapid acquisition gradient echo (MP-RAGE), diffusion tensor imaging (DTI), and resting-state functional MRI (fMRI). Despite operating on fundamentally different image contrasts, these methods claim a high degree of agreement with the Morel stereotactic atlas of the thalamus. However, no comparison has been undertaken to compare the results of these disparate parcellation methods. We have implemented state-of-the-art structural-, diffusion-, and functional imaging-based thalamus parcellation techniques and used them on a single set of subjects. We present the first systematic qualitative and quantitative comparison of these methods. The results show that DTI parcellation agrees more with structural parcellation in the larger thalamic nuclei, while rsfMRI parcellation agrees more with structural parcellation in the smaller nuclei. Structural parcellation is the most accurate in the delineation of small structures such as the habenular, antero-ventral, and medial geniculate nuclei.


Subject(s)
Brain Mapping/methods , Magnetic Resonance Imaging/methods , Thalamus/diagnostic imaging , Diffusion Tensor Imaging/methods , Humans , Image Processing, Computer-Assisted/methods , Thalamus/anatomy & histology , Thalamus/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...