Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Chem Eng Sci ; 2082019 Nov 23.
Article in English | MEDLINE | ID: mdl-31579324

ABSTRACT

To obtain a fundamental understanding of the various factors affecting pressure filtration performance, we developed a coupled computational fluid dynamics (CFD) and discrete element method (DEM) model for simulating the effect of solvent flow through the solid particle cake. The model was validated using data collected by filtering mixtures of spherical glass beads and deionized water through a dead-end cell over a range of applied pressures. Numerical experiments were performed to study the effects of particle properties, liquid properties and operating conditions on filtration performance. The model predicted that the filtrate flow rate could be strongly affected by the mean size of the particles, the presence of small particles (i.e. fines) in the particle distribution, the viscosity of the liquid, and particle deformation leading to cake compression. Our study demonstrated that CFD-DEM modeling is a powerful approach for understanding cake filtration processes and predicting filtration performance.

2.
AAPS PharmSciTech ; 13(1): 231-46, 2012 Mar.
Article in English | MEDLINE | ID: mdl-22232020

ABSTRACT

A combination of analytical and statistical methods is used to improve a tablet coating process guided by quality by design (QbD) principles. A solid dosage form product was found to intermittently exhibit bad taste. A suspected cause was the variability in coating thickness which could lead to the subject tasting the active ingredient in some tablets. A number of samples were analyzed using a laser-induced breakdown spectroscopy (LIBS)-based analytical method, and it was found that the main variability component was the tablet-to-tablet variability within a lot. Hence, it was inferred that the coating process (performed in a perforated rotating pan) required optimization. A set of designed experiments along with response surface modeling and kriging method were used to arrive at an optimal set of operating conditions. Effects of the amount of coating imparted, spray rate, pan rotation speed, and spray temperature were characterized. The results were quantified in terms of the relative standard deviation of tablet-averaged LIBS score and a coating variability index which was the ratio of the standard deviation of the tablet-averaged LIBS score and the weight gain of the tablets. The data-driven models developed based on the designed experiments predicted that the minimum value of this index would be obtained for a 6% weight gain for a pan operating at the highest speed at the maximum fill level while using the lowest spraying rate and temperature from the chosen parametric space. This systematic application of the QbD-based method resulted in an enhanced process understanding and reducing the coating variability by more than half.


Subject(s)
Chemistry, Pharmaceutical/standards , Drug Design , Pharmaceutical Preparations/standards , Tablets, Enteric-Coated/standards , Chemistry, Pharmaceutical/methods , Drug Compounding , Pharmaceutical Preparations/chemistry , Quality Control , Tablets, Enteric-Coated/chemistry
3.
Drug Dev Ind Pharm ; 35(12): 1460-9, 2009 Dec.
Article in English | MEDLINE | ID: mdl-19929205

ABSTRACT

OBJECTIVE: The essential aim of this article is to develop effective methods for improving the flow properties of active pharmaceutical ingredients (APIs) without requiring particle size or shape modification. METHODS: The 'formulation' approach used here focuses on enhancing flow properties of three chemically different drug powders (micronized acetaminophen, levalbuterol tartrate, and didesmethylsibutramine tartrate) by using small amounts of lubricants, glidants, and other additives, both individually and in combination. Additives are intimately mixed using a laboratory-scale V-blender with an intensifier bar. Flow index, dilation, and electrical impedance were measured for a total of 24 blends. RESULTS: The flow behavior of all three APIs improved with the addition of these additives. Relative effectiveness of different additive combinations displayed remarkable consistency for all three APIs. Simultaneous presence of SiO2, MgSt, and talc led to substantial decreases in cohesiveness, causing major improvements in flowability of powder. All three properties showed a very tight correlation. CONCLUSIONS: Drug powders with improved flow were found to exhibit low dilation and low impedance values. A common linear correlation between flow index and impedance and also between dilation and impedance was observed for all three APIs, indicating that electric properties play a substantial role in the cohesivity of all three APIs, and suggesting the presence of a common mechanism for the emergence (and mitigation) of cohesive phenomena.


Subject(s)
Drug Compounding/methods , Excipients/chemistry , Powders/chemistry , Technology, Pharmaceutical/methods , Acetaminophen/chemistry , Albuterol/chemistry , Chemical Phenomena , Chemistry, Pharmaceutical/methods , Colloids , Cyclobutanes/chemistry , Electric Impedance , Particle Size , Rheology/instrumentation , Rheology/methods , Silicon Dioxide/chemistry , Stearic Acids/chemistry , Talc/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...