Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Food Microbiol ; 106(1): 1-24, 2006 Jan 15.
Article in English | MEDLINE | ID: mdl-16216368

ABSTRACT

The genus Enterococcus is the most controversial group of lactic acid bacteria. Studies on the microbiota of many traditional cheeses in the Mediterranean countries have indicated that enterococci play an important role in the ripening of these cheeses, probably through proteolysis, lipolysis, and citrate breakdown, hence contributing to their typical taste and flavour. Enterococci are also present in other fermented foods, such as sausages and olives. However, their role in these products has not been fully elucidated. Furthermore, the production of bacteriocins by enterococci is well documented. Moreover, enterococci are nowadays used as probiotics. At the same time, however, enterococci have been associated with a number of human infections. Several virulence factors have been described and the number of vancomycin-resistant enterococci is increasing. The controversial nature of enterococci has prompted an enormous increase in scientific papers and reviews in recent years, where researchers have been divided into two groups, namely pro and contra enterococci. To the authors' impression, the negative traits have been focused on very extensively. The aim of the present review is to give a balanced overview of both beneficial and virulence features of this divisive group of microorganisms, because it is only acquaintance with both sides that may allow their safe exploitation as starter cultures or co-cultures.


Subject(s)
Cheese/microbiology , Enterococcus , Food Microbiology , Foodborne Diseases/microbiology , Probiotics , Bacteriocins/biosynthesis , Consumer Product Safety , Drug Resistance, Bacterial , Enterococcus/drug effects , Enterococcus/metabolism , Enterococcus/pathogenicity , Fermentation , Foodborne Diseases/epidemiology , Humans , Virulence
2.
Appl Environ Microbiol ; 67(12): 5482-7, 2001 Dec.
Article in English | MEDLINE | ID: mdl-11722896

ABSTRACT

Citrate metabolism by Enterococcus faecalis FAIR-E 229 was studied in various growth media containing citrate either in the presence of glucose or lactose or as the sole carbon source. In skim milk (130 mM lactose, 8 mM citrate), cometabolism of citrate and lactose was observed from the first stages of the growth phase. Lactose was stoichiometrically converted into lactate, while citrate was converted into acetate, formate, and ethanol. When de Man-Rogosa-Sharpe (MRS) broth containing lactose (28 mM) instead of glucose was used, E. faecalis FAIR-E 229 catabolized only the carbohydrate. Lactate was the major end product, and small amounts of ethanol were also detected. Increasing concentrations of citrate (10, 40, 70, and 100 mM) added to MRS broth enhanced both the maximum growth rate of E. faecalis FAIR-E 229 and glucose catabolism, although citrate itself was not catabolized. Glucose was converted stoichiometrically into lactate, while small amounts of ethanol were produced as well. Finally, when increasing initial concentrations of citrate (10, 40, 70, and 100 mM) were used as the sole carbon sources in MRS broth without glucose, the main end products were acetate and formate. Small amounts of lactate, ethanol, and acetoin were also detected. This work strongly supports the suggestion that enterococcal strains have the metabolic potential to metabolize citrate and therefore to actively contribute to the flavor development of fermented dairy products.


Subject(s)
Citric Acid/metabolism , Enterococcus faecalis/metabolism , Cheese/microbiology , Culture Media/chemistry , Enterococcus faecalis/growth & development , Glucose/metabolism , Kinetics , Lactose/metabolism
3.
J Appl Microbiol ; 88(5): 817-25, 2000 May.
Article in English | MEDLINE | ID: mdl-10792542

ABSTRACT

A total of 32 Streptococcus macedonicus strains, isolated from Greek Kasseri cheese, were screened for biochemical properties of technological importance in milk fermentation processing, such as acid production, proteolytic and lipolytic activity, citrate metabolism, exopolysaccharide production, antimicrobial activity and biogenic amines production. All strains were found to be moderate acidifiers in milk. Only four strains could hydrolyse milk casein, while 11 strains showed lipolytic activity against tributyrin. Using amino acid derivatives of 4-nitroaniline as substrates, the highest peptidase activities were determined against phenylalanine- and glycine-proline-4-nitroanilide. Using fatty acid derivatives of 4-nitrophenol, it was shown that all strains exhibited esterase activities up to caprylate, with highest values against butyrate and caproate. Only one showed activity up to palmitate; this was also the most active strain against tributyrin. Five of the 32 strains could metabolize citrate but none of them produced exopolysaccharides. Nine strains displayed antimicrobial activity towards Clostridium tyrobutyricum, while no antimicrobial activity was detected against Listeria innocua and Propionibacterium freudenreichii subsp. shermanii. Finally, none was able to decarboxylize ornithine, histidine or lysine, and only four strains produced tyramine from tyrosine.


Subject(s)
Cheese/microbiology , Food Microbiology , Streptococcus/enzymology , Animals , Bacteriocins/biosynthesis , Biogenic Amines/biosynthesis , Caseins/metabolism , Citric Acid/metabolism , Esterases/metabolism , Hydrogen-Ion Concentration , Leucine/analysis , Lipolysis , Milk/chemistry , Milk/microbiology , Peptide Hydrolases/metabolism , Streptococcus/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...