Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Opt Lett ; 49(4): 1037-1040, 2024 Feb 15.
Article in English | MEDLINE | ID: mdl-38359247

ABSTRACT

The laser-induced decay of an atomic system in an intense infrared and perturbative extreme ultraviolet (XUV) pulse is considered within Keldysh and streaking ionization channels. The streak camera method is discussed for two cases corresponding to different ranges of photoelectron momentum: i) the streaking channel significantly dominates the Keldysh channel and ii) the Keldysh channel of ionization is dominant, while two channels may interfere. The retrieval of XUV pulse parameters for these two cases is discussed and supported by numerical calculations.

2.
Opt Lett ; 48(13): 3583-3586, 2023 Jul 01.
Article in English | MEDLINE | ID: mdl-37390186

ABSTRACT

The secondary generated radiation induced by orthogonal linearly polarized extreme ultraviolet (XUV) and infrared (IR) pulses is analyzed for the spectral region of the second XUV harmonic. The polarization-filtering-based method is utilized to separate two spectrally overlapping and competing channels, which are the XUV second harmonic generation (SHG) by IR-dressed atom and XUV-assisted recombination channel of high-order harmonic generation in the IR field [Phys. Rev. A98, 063433 (2018)10.1103/PhysRevA.98.063433]. We demonstrate the use of the separated XUV SHG channel for accurately retrieving the IR-pulse waveform and find the range of IR-pulse intensities for which this retrieving is applicable.

3.
Opt Express ; 29(23): 38298-38313, 2021 Nov 08.
Article in English | MEDLINE | ID: mdl-34808885

ABSTRACT

An all-optical method is suggested for the metrology of an isolated, pulse-to-pulse stabilized attosecond pulse. It is shown analytically that high-order harmonic generation (HHG) yield for an intense IR pulse and time-delayed attosecond pulse keeps encoded waveform of the attopulse, which can be decoded by the time delay measurements of the HHG yield. The retrieval method is demonstrated by modeling HHG from Ne atom within time-dependent Kohn-Sham equations. The application of the suggested method for monitoring the carrier-envelope phase of the attosecond pulse is discussed.

4.
Opt Express ; 29(2): 1428-1440, 2021 Jan 18.
Article in English | MEDLINE | ID: mdl-33726358

ABSTRACT

Interpretation of strong-field phenomena is mostly based on the analysis of classical electron trajectories in an intense laser field, whose specific properties determine general features of nonlinear laser-matter interaction. Currently, the visualization of closed electron trajectories contributing to high harmonic generation (HHG) of the laser field is the prerogative of a theoretical analysis based on the time-frequency spectrogram of the induced dipole acceleration. Here, we propose a method for direct reconstruction of the HHG time-frequency spectrogram using a time-delayed probe XUV pulse. Our analytical theory and ab initio numerical simulations demonstrate that the XUV-assisted HHG yield as a function of time delay and harmonic energy mimics the short-time Fourier transform of the dipole acceleration induced by the laser field, thereby providing possible in-situ experimental access for tracing electron dynamics in strong-field phenomena.

5.
Phys Rev Lett ; 102(24): 243901, 2009 Jun 19.
Article in English | MEDLINE | ID: mdl-19659006

ABSTRACT

A closed-form analytic formula for high-order harmonic generation (HHG) rates for atoms (that generalizes an HHG formula for negative ions [M. V. Frolov, J. Phys. B 42, 035601 (2009)10.1088/0953-4075/42/3/035601]) is used to study laser wavelength scaling of the HHG yield for harmonic energies in the cutoff region of the HHG plateau. We predict increases of the harmonic power for HHG by Ar, Kr, and Xe with increasing wavelength lambda over atom-specific intervals of lambda in the infrared region, lambda approximately (0.8-2.0) microm.

SELECTION OF CITATIONS
SEARCH DETAIL
...