Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Asian J Androl ; 22(6): 623-628, 2020.
Article in English | MEDLINE | ID: mdl-32217836

ABSTRACT

Assisted reproductive technologies involving the use of spermatozoa and eggs for in vitro fertilization (IVF) have come as the solution for many infertile couples to become parents. However, in some cases, the use of ejaculated spermatozoa delivers poor IVF performance. Some studies have suggested the use of testicular spermatozoa in severe male infertility cases, but no guidelines regarding their utilization are currently available. In the present study, we found the mRNA protamine 1/protamine 2 (P1/P2) ratio to be a valuable biomarker of poor sperm function that could be used as a diagnostic key for the identification of cases that would benefit from the use of testicular spermatozoa. A total of 23 couples undergoing egg donation cycles with at least one previous cycle failure were studied. All couples underwent two consecutive intracytoplasmic sperm injection (ICSI) cycles with either ejaculated or testicular spermatozoa (TESA). The sperm mRNA P1/P2 ratio, fertilization rate, blastocyst rate, and pregnancy and live birth rate were compared. Results showed improved ICSI and clinical outcomes in cycles with testicular spermatozoa in men with altered mRNA P1/P2 ratios. TESA cycles presented significantly higher rates of fertilization (mean ± standard deviation: 76.1% ± 15.1% vs 65.5% ± 18.8%), blastocyst formation (55.0% ± 20.3% vs 30.8% ± 23.8%), and good morphological quality blastocyst (28.9% ± 22.9% vs 13.5% ± 17.9%) and also improvements on pregnancy (60.9% vs 0%) and healthy birth rates (56.5% vs 0%) than EJACULATE cycles. The results described here suggest that in patients with previous IVF/ICSI failures and aberrant mRNA protamine ratios, the use of testicular spermatozoa may be a good alternative to improve clinical outcomes.


Subject(s)
Protamines/metabolism , RNA, Messenger/metabolism , Reproductive Techniques, Assisted , Sperm Injections, Intracytoplasmic , Sperm Retrieval , Spermatozoa/physiology , Adult , Humans , Male , Middle Aged , Retrospective Studies , Treatment Outcome
2.
Reprod Biomed Online ; 37(2): 136-144, 2018 08.
Article in English | MEDLINE | ID: mdl-29853423

ABSTRACT

RESEARCH QUESTION: Mutations of the beta-globin gene (HBB) cause beta-thalassaemia and sickle cell anaemia. These are the most common cause of severe inherited disease in humans. Traditional preimplantation genetic testing protocols for detecting HBB mutations frequently involve labour intensive, patient-specific test designs owing to the wide diversity of disease-associated HBB mutations. We, therefore, asked the question whether a universally applicable preimplantation genetic testing method can be developed to test for HBB gene mutations. DESIGN: A multiplex polymerase chain reaction protocol was designed, allowing simultaneous amplification of multiple overlapping DNA fragments encompassing the entire HBB gene sequence in addition to 17 characterized, closely linked single nucleotide polymorphisms (SNP). Amplicons were then analysed using a next-generation sequencing method, revealing mutations and SNP genotypes. The protocol was extensively validated, optimized and eventually clinically applied on whole-genome amplified DNA derived from embryos of three couples carrying different combinations of beta-thalassaemia mutations. RESULTS: The HBB mutation status and associated SNP haplotypes were successfully determined in all 21 embryos. Analysis of 141 heterozygous sites showed no instances of allele dropout and the test displayed 100% concordance compared with the results obtained from karyomapping. This suggests that the combination of trophectoderm biopsy and highly sensitive next-generation sequencing may provide superior accuracy than typically achieved using traditional preimplantation genetic testing methods. Importantly, no patient-specific test design or optimization was needed. CONCLUSIONS: It is hoped that protocols that deliver almost universally applicable low-cost tests, without compromising diagnostic accuracy, will improve patient access to preimplantation genetic testing, especially in less affluent parts of the world.


Subject(s)
Anemia, Sickle Cell/diagnosis , Blastocyst , Genetic Testing/methods , High-Throughput Nucleotide Sequencing , Preimplantation Diagnosis/methods , beta-Thalassemia/diagnosis , Alleles , Anemia, Sickle Cell/genetics , Female , Genotype , Humans , Mutation , Pregnancy , beta-Thalassemia/genetics
3.
Hum Genet ; 135(5): 555-568, 2016 May.
Article in English | MEDLINE | ID: mdl-27068821

ABSTRACT

MTHFR is an important enzyme in the metabolism of folic acid and is crucial for reproductive function. Variation in the sequence of MTHFR has been implicated in subfertility, but definitive data are lacking. In the present study, a detailed analysis of two common MTHFR polymorphisms (c.677C>T and c.1298A>C) was performed. Additionally, for the first time, the frequencies of different MTHFR alleles were assessed in preimplantation embryos. Several striking discoveries were made. Firstly, results demonstrated that maternal MTHFR c.1298A>C genotype strongly influences the likelihood of a pregnancy occurring, with the 1298C allele being significantly overrepresented amongst women who have undergone several unsuccessful assisted reproductive treatments. Secondly, parental MTHFR genotypes were shown to affect the production of aneuploid embryos, indicating that MTHFR is one of the few known human genes with the capacity to modulate rates of chromosome abnormality. Thirdly, an unusual deviation from Hardy-Weinberg equilibrium was noted for the c.677C>T polymorphism in subfertile patients, especially those who had experienced recurrent failure of embryo implantation or miscarriage, potentially explained by a rare case of heterozygote disadvantage. Finally, a dramatic impact of the MTHFR 677T allele on the capacity of chromosomally normal embryos to implant is described. Not only do these findings raise a series of interesting biological questions, but they also argue that testing of MTHFR could be of great clinical value, identifying patients at high risk of implantation failure and revealing the most viable embryos during in vitro fertilisation (IVF) cycles.


Subject(s)
Aneuploidy , Embryonic Development/genetics , Infertility/epidemiology , Infertility/genetics , Methylenetetrahydrofolate Reductase (NADPH2)/genetics , Polymorphism, Single Nucleotide/genetics , Adult , Cohort Studies , Embryo Transfer , Female , Fertilization in Vitro , Humans , Pregnancy , United Kingdom/epidemiology
4.
Reprod Biomed Online ; 31(6): 770-5, 2015 Dec.
Article in English | MEDLINE | ID: mdl-26507283

ABSTRACT

Preimplantation genetic diagnosis (PGD) was carried out for a couple carrying a de-novo deletion in the TSC2 gene, responsible for tuberous sclerosis. Karyomapping, a method employing genome-wide analysis of single nucleotide polymorphisms (SNP), was used as PGD protocol. Analysis of DNA from the affected parent using karyomapping confirmed the region covered by the deletion and revealed more than 30 SNP located within the affected region. These SNP were subsequently used for embryo diagnosis (deletion revealed by hemizygosity and/or reduced probe intensity). Seven blastocyst embryos underwent trophectoderm biopsy followed by vitrification. Biopsied cells were subjected to comprehensive aneuploidy screening using microarray comparative genomic hybridization (aCGH), with karyomapping for the detection of embryos carrying the mutant TSC2 gene carried out in tandem. Two embryo transfers were performed, the second of which resulted in the birth of a child. This study highlights that karyomapping may be applicable to a subset of de-novo mutations undetectable using standard PGD strategies. Additionally, karyomapping results were in complete concordance with aCGH, both methods revealing the same aneuploidies in the embryos tested. It was concluded that karyomapping may represent a valuable advance in cases of PGD for monogenic diseases.


Subject(s)
Chromosome Mapping/methods , Karyotyping/methods , Preimplantation Diagnosis/methods , Sequence Deletion , Adult , Comparative Genomic Hybridization , Embryo Transfer , Female , Humans , Infant, Newborn , Male , Polymerase Chain Reaction/methods , Polymorphism, Single Nucleotide , Pregnancy , Sperm Injections, Intracytoplasmic
5.
Reprod Biomed Online ; 31(6): 776-82, 2015 Dec.
Article in English | MEDLINE | ID: mdl-26380865

ABSTRACT

Blastocyst biopsy is now widely used for both preimplantation genetic screening (PGS) and preimplantation genetic diagnosis (PGD). Although this approach yields good results, variable embryo quality and rates of development remain a challenge. Here, a case is reported in which a blastocyst was biopsied for PGS by array comparative genomic hybridization on day 6 after insemination, having hatched completely. In addition to a small trophectoderm sample, excluded cell fragments from the subzonal space from this embryo were also sampled. Unexpectedly, the array comparative genomic hybridization results from the fragments and trophectoderm sample were non-concordant: 47,XX,+19 and 46,XY, respectively. DNA fingerprinting by short tandem repeat and amelogenin analysis confirmed the sex chromosome difference but seemed to show that the two samples were related but non-identical. Genome-wide single nucleotide polymorphism genotyping and karyomapping identified that the origin of the DNA amplified from the fragments was that of the second polar body corresponding to the oocyte from which the biopsied embryo developed. The fact that polar body DNA can persist to the blastocyst stage provides evidence that excluded cell fragments should not be used for diagnostic purposes and should be avoided when performing embryo biopsies as there is a risk of diagnostic errors.


Subject(s)
Blastocyst/metabolism , Karyotyping/methods , Polar Bodies/metabolism , Preimplantation Diagnosis/methods , Adult , Biopsy , Blastocyst/pathology , Cleavage Stage, Ovum/metabolism , Cleavage Stage, Ovum/pathology , Comparative Genomic Hybridization/methods , DNA/metabolism , Embryo, Mammalian , Female , Humans , Male , Polar Bodies/pathology , Pregnancy
6.
Evolution ; 67(10): 3032-42, 2013 Oct.
Article in English | MEDLINE | ID: mdl-24094352

ABSTRACT

The hybrid zone on Mount Etna (Sicily) between Senecio aethnensis and Senecio chrysanthemifolius (two morphologically and physiologically distinct species) is a classic example of an altitudinal cline. Hybridization at intermediate altitudes and gradients in phenotypic and life-history traits occur along altitudinal transects of the volcano. The cline is considered to be a good example of ecological selection with species differences arising by divergent selection opposing gene flow. However, the possibility that the cline formed from recent secondary contact following an allopatric phase is difficult to exclude. We demonstrate a recent split between S. aethnensis and S. chrysanthemifolius (as recent as ∼32,000 years ago) and sufficient gene flow (2Nm > 1) to have prevented divergence (implicating a role for diversifying selection in the maintenance of the cline). Differentially expressed genes between S. aethnensis and S. chrysanthemifolius exhibit significantly higher genetic divergence relative to "expression invariant" controls, suggesting that species differences may in part be mediated by divergent selection on differentially expressed genes involved with altitude-related adaptation. The recent split time and the absence of fixed differences between these two ecologically distinct species suggest the rapid evolution to an altitudinal cline involving selection on both sequence and expression variation.


Subject(s)
Altitude , Animal Distribution/physiology , Genetic Speciation , Hybridization, Genetic/genetics , Senecio/genetics , Gene Flow , Genetic Variation , Genetics, Population , Microsatellite Repeats/genetics , Senecio/physiology , Sequence Analysis, DNA , Sicily , Time Factors
7.
Hum Genet ; 132(9): 1001-13, 2013 Sep.
Article in English | MEDLINE | ID: mdl-23620267

ABSTRACT

Despite the clinical importance of aneuploidy, surprisingly little is known concerning its impact during the earliest stages of human development. This study aimed to shed light on the genesis, progression, and survival of different types of chromosome anomaly from the fertilized oocyte through the final stage of preimplantation development (blastocyst). 2,204 oocytes and embryos were examined using comprehensive cytogenetic methodology. A diverse array of chromosome abnormalities was detected, including many forms never recorded later in development. Advancing female age was associated with dramatic increase in aneuploidy rate and complex chromosomal abnormalities. Anaphase lag and congression failure were found to be important malsegregation causing mechanisms in oogenesis and during the first few mitotic divisions. All abnormalities appeared to be tolerated until activation of the embryonic genome, after which some forms started to decline in frequency. However, many aneuploidies continued to have little impact, with affected embryos successfully reaching the blastocyst stage. Results from the direct analyses of female meiotic divisions and early embryonic stages suggest that chromosome errors present during preimplantation development have origins that are more varied than those seen in later pregnancy, raising the intriguing possibility that the source of aneuploidy might modulate impact on embryo viability. The results of this study also narrow the window of time for selection against aneuploid embryos, indicating that most survive until the blastocyst stage and, since they are not detected in clinical pregnancies, must be lost around the time of implantation or shortly thereafter.


Subject(s)
Anaphase/physiology , Aneuploidy , Chromosome Segregation/physiology , Embryonic Development/genetics , Embryonic Development/physiology , Oogenesis/physiology , Age Factors , Anaphase/genetics , Chromosome Segregation/genetics , Comparative Genomic Hybridization , Cytogenetic Analysis , Female , Humans , Oogenesis/genetics , Pregnancy
8.
Asian J Androl ; 13(5): 764-8, 2011 Sep.
Article in English | MEDLINE | ID: mdl-21725332

ABSTRACT

A wide variety of techniques for the preparation of sperm are currently available, of which the most commonly employed are density-gradient centrifugation (DGC) and swim-up (SUP). To date, these methods appear to be effective in selecting functional sperm for assisted reproduction techniques (ART), but they may have negative effects on sperm DNA. In this study, the ability of these semen processing techniques to eliminate spermatozoa containing single- and double-strand DNA damage was assessed by the two-tailed comet assay and the sperm chromatin dispersion test in 157 semen samples from patients seeking assisted reproduction treatment. Our results indicated that SUP and DGC are equally efficient in eliminating spermatozoa containing double-strand DNA damage and sperm with highly damaged (degraded) DNA, as characterized by the presence of both single- and double-strand DNA breaks. However, DGC is more efficient than SUP in selecting spermatozoa that are free from single-strand DNA damage. Future studies should characterise the importance of the various types of DNA damage and examine the sperm processing protocols used in each laboratory to determine their ability to eliminate DNA damage and hence, prevent the potential transmission of genetic mutations via ART.


Subject(s)
DNA Damage , Spermatozoa , Humans , Male
9.
Reprod Biomed Online ; 18(5): 609-16, 2009 May.
Article in English | MEDLINE | ID: mdl-19549437

ABSTRACT

DNA fragmentation is considered an important parameter of semen quality, and of significant value as a predictor of male fertility. Poor quality chromatin is closely associated with, and highly indicative of, some fertility problems. Many methodologies to assess DNA fragmentation in spermatozoa are available, but they are all unable to differentiate between single-stranded DNA breaks (SSB) and double-stranded DNA breaks (DSB) in the same sperm cell. The two-tailed Comet assay (2T-Comet) protocol overcomes this limitation. A modification of the original Comet assay was developed for the simultaneous evaluation of DNA SSB and DSB in human spermatozoa. The 2T-Comet assay is a fast, sensitive, and reliable procedure for the quantification and characterization of DNA damage in spermatozoa. It is an innovative method for assessing sperm DNA integrity, which has important implications for human fertility and andrological pathology.


Subject(s)
Comet Assay/methods , DNA Fragmentation , Spermatozoa/chemistry , Acridine Orange , Humans , Hydrogen Peroxide , Image Processing, Computer-Assisted , In Situ Hybridization, Fluorescence/methods , Male , Sensitivity and Specificity , Statistics, Nonparametric
SELECTION OF CITATIONS
SEARCH DETAIL
...