Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 30
Filter
Add more filters










Publication year range
1.
ACS Omega ; 9(17): 19099-19107, 2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38708227

ABSTRACT

A sustainable, bioinspired approach to functionalize basalt fibers with an innovative gallic acid (GA)-iron phenyl phosphonate complex (BF-GA-FeP), for the purpose of improving the flame retardancy in composite materials, is developed. BFs were at first pretreated with O3, obtaining surface free hydroxyl groups that allowed the subsequent covalent immobilization of biosourced GA units on the fiber through ester linkages. Phenolic -OH groups of the GA units were then exploited for the complexation of iron phenyl phosphonate, resulting in the target-complex-coated BF fiber (BF-GA-FeP). Microwave plasma atomic emission spectroscopy and scanning electron microscopy coupled with energy-dispersive X-ray spectroscopy analyses of BF-GA-FeP highlighted an increase in iron content, modification of fiber morphology, and occurrence of phosphorus, respectively. BFs, modified with a low amount of the developed complex, were used to reinforce a poly(lactic acid) (PLA) matrix in the production of a biocomposite (PLA/BF-FeP). PLA/BF-FeP showed a higher thermal stability than neat PLA and PLA reinforced with untreated BFs (PLA/BF), as confirmed by thermogravimetric analysis. The cone calorimeter test highlighted several advantages for PLA/BF-FeP, including a prolonged time to ignition, a reduced time to flame out, an 8% decrease in the peak heat release rate, and a 15% reduced fire propagating index compared to PLA/BF.

2.
ACS Appl Mater Interfaces ; 16(19): 24483-24493, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38691769

ABSTRACT

This study investigates the effect of surface modifications of the titanium substrate on the growth of electrochemically deposited copper. These materials are intended to serve as cathodes in the electroreduction of nitrates in aqueous solutions. Surface modifications included the use of hydrogen fluoride for titanium etching and anodization to promote the growth of a structured titania nanotube array. The effect of an intermediate calcination step for the nanotubes before deposition was assessed along with a comparison to an untreated substrate electrode. The materials were comprehensively characterized by SEM, XRD, contact angle, potentiodynamic tests, EIS, and cyclic voltammetry. Their electrocatalytic ability was tested in the reduction of aqueous solutions containing nitrates. The results reveal that surface finishing impacted the shape and size of the Cu microparticles, as well as the nucleation mechanism enabling a crystal-facet-controllable synthesis. All the materials exhibited microsized copper particles with a spherical shape with some clusters. On the etched titanium surface, a high number of heterogeneous submicroscopic particles were also present. The thermally treated anodized substrate promoted the development of a combination of sparse microparticles corresponding to defect sites in amorphous titanium and the presence of a diffuse coating of octahedral nanosized particles whose growth was promoted by the tetragonal structure of anatase crystals. Electrochemical tests display reduced charge transfer resistance upon copper deposition on the modified substrates, which is indicative of the enhanced conductivity of the coated materials. Additionally, cyclic voltammetry and electrolysis experiments reveal the electrodes' potential for nitrate reduction, showing a better response for the etched titanium substrate (30% nitrate removal, after 2 h at 25 mA cm-2).

3.
Materials (Basel) ; 16(15)2023 Aug 03.
Article in English | MEDLINE | ID: mdl-37570140

ABSTRACT

With a view to achieving sustainable development and a circular economy, this work focused on the possibility to valorize a secondary waste stream of recycled carbon fiber (rCF) to produce a 3D printing usable material with a PA6,6 polymer matrix. The reinforcing fibers implemented in the research are the result of a double-recovery action: starting with pyrolysis, long fibers are obtained, which are used to produce non-woven fabrics, and subsequently, fiber agglomerate wastes obtained from this last process are ground in a ball mill. The effect of different amounts of reinforcement at 5% and 10% by weight on the mechanical properties of 3D-printed thermoplastic composites was investigated. Although the recycled fraction was successfully integrated in the production of filaments for 3D printing and therefore in the production of specimens via the fused deposition modeling technique, the results showed that fibers did not improve the mechanical properties as expected, due to an unsuitable average size distribution and the presence of a predominant dusty fraction ascribed to the non-optimized ball milling process. PA6,6 + 10 wt.% rCF composites exhibited a tensile strength of 59.53 MPa and a tensile modulus of 2.24 GPa, which correspond to an improvement in mechanical behavior of 5% and 21% compared to the neat PA6,6 specimens, respectively. The printed composite specimens loaded with the lowest content of rCF provided the greatest improvement in strength (+9% over the neat sample). Next, a prediction of the "optimum" critical length of carbon fibers was proposed that could be used for future optimization of recycled fiber processing.

4.
Front Chem ; 11: 1234763, 2023.
Article in English | MEDLINE | ID: mdl-37521014

ABSTRACT

Due to its excellent properties, poly(ethylene terephthalate) (PET) is one of the most produced and consumed polymers. Among plastics, it represents the main contributor to environmental pollution. Following the circular economy model, the chemical upcycling of PET reduces the amount of waste generated and transforms it into high-value products. The depolymerization of poly(ethylene terephthalate) into oligomers or monomers leads to forming a library of reactive molecules involved in different polymerization processes to obtain compounds with improved properties. Herein, several ß-hydroxy amines were synthesized and used for the chemical recycling of water bottle waste by an environmental benefit aminolysis process to get very useful new terephthalamide diol monomers. The recycled diol monomers were subsequently exploited to synthesize poly(urethane acrylates) (PUAs) UV-curable coatings, and their chemical, thermal and mechanical characterizations were performed. The results show the great potential of the developed synthesis protocols to obtain PUAs with final properties that can be modulated to meet the requirements of different applications.

5.
J Hazard Mater ; 452: 131244, 2023 06 15.
Article in English | MEDLINE | ID: mdl-36965354

ABSTRACT

In the present study commercial Polylactic Acid-based disposable cups and plates were selected for lab scale anaerobic degradability tests. The experiments were carried out under thermophilic conditions at different inoculum to substrate ratios and test material sizes, and the specific biogas production and associated kinetics were evaluated. Maximum biogas production was comparable for almost all the experimental runs (1620 and 1830 NmL/gTOCPLA) and a biodegradation degree in the range 86-100% was attained. Moreover, physical, chemical and microscopical analyses were used to characterize the tested materials before and after the degradation. The products composition was assessed and the presence of some additives (mainly Ca-based) was detected. Potential correlations among the process parameters and product composition were derived and a delay in process kinetics with increasing amount of additives embedded in the polymeric matrix was observed, confirming the relevant influence of the chemical blend on the biodegradation process.


Subject(s)
Biofuels , Polyesters , Anaerobiosis , Polymers , Biodegradation, Environmental
6.
Polymers (Basel) ; 14(22)2022 Nov 21.
Article in English | MEDLINE | ID: mdl-36433180

ABSTRACT

The transportation sector is striving to meet the more severe European legislation which encourages all industrial fields to embrace more eco-friendly policies by exploiting constituents from renewable resources. In this framework, the present work assessed the potential of a bio-based, low molecular weight PA11 matrix reinforced with flax and intraply flax/basalt hybrid fabrics. To this aim, both quasi-static and impact performance were addressed through three-point bending and low-velocity impact tests, respectively. For hybrid composites, the effect of stacking sequence, i.e., [0/0] and [0/90], and fiber orientation were considered, while the effect of temperature, i.e., -40 °C, room temperature and +45 °C, was investigated for laminates' impact response. The mechanical experimental campaign was supported by thermal and morphological analyses. The results disclosed an improved processability of the low molecular weight PA11, which ensured a manufacturing temperature of 200 °C, which is fundamental to minimize flax fibers' thermal degradation. Both quasi-static and impact properties demonstrated that hybridization is a good solution for obtaining good mechanical properties while preserving laminates' lightness and biodegradability. The [0/90] configuration proved to be the best solution, providing satisfying flexural performance, with an increase between 62% and 83% in stiffness and between 19.6% and 37.6% in strength compared to flax-based laminates, and the best impact performance, with a reduction in permanent indentation and back crack extent.

7.
Polymers (Basel) ; 14(20)2022 Oct 15.
Article in English | MEDLINE | ID: mdl-36297926

ABSTRACT

The effect of four lignocellulosic waste fillers on the thermal and mechanical properties of biocomposites was investigated. Powdered licorice root, palm leaf, holm oak and willow fillers were melt compounded with polypropylene at two different weight contents, i.e., 10 and 30, and then injection molded. A commercially available maleated coupling agent was used to improve the filler/matrix interfacial adhesion at 5 wt.%. Composites were subjected to chemical (FTIR-ATR), thermal (TGA, DSC, DMA) and mechanical (tensile, bending and Charpy impact) analyses coupled with a morphological investigation by scanning electron microscopy. Although similarities among the different formulations were noted, holm oak fillers provided the best combination of thermal and mechanical performance. In particular, at 30 wt.% content with coupling agent, this composite formulation displayed remarkable increases in tensile strength and modulus, flexural strength and modulus, of 28% and 110%, 58% and 111%, compared to neat PP, respectively. The results imply that all these lignocellulosic waste fillers can be used successfully as raw materials for biocomposites, with properties comparable to those featured by other natural fillers.

8.
Polymers (Basel) ; 14(20)2022 Oct 19.
Article in English | MEDLINE | ID: mdl-36298001

ABSTRACT

In this work, the use of a recycled mix stemming from the treatment of multilayer aseptic packaging used in the food and beverage industry is proposed as the matrix for short fibre composites reinforced with flax fibres, to generate value-added materials in contrast to the more common end-of-life scenario including energy recovery. This is expected to be a preferred choice in the waste hierarchy at the European level. A commercially available material (EcoAllene) obtained from multilayer packaging recycling was compounded with short flax fibres up to 30 wt.% by twin screw extrusion, with a view to enhancing its poor mechanical profile and broadening its applications. Composites were in depth analyzed by thermogravimetric analysis and differential scanning calorimetry, which highlighted the complex nature of this recycled product, a limited nucleation ability of flax fibres and a lower thermal stability due to the premature degradation of natural hemicellulose and cellulose, though featuring in any case onset degradation temperatures higher than 300 °C. Composites' mechanical properties were assessed in tension, bending and impact conditions, with remarkable improvements over the neat matrix in terms of stiffness and strength. In particular, at 30 wt.% fibre content and with 5 wt.% of maleated coupling agent, an increase in tensile and flexural strength values by 92% and 138% was achieved, respectively, without compromising the impact strength. The effectiveness of flax fibres confirmed by dynamo-mechanical analysis is beneficial to the exploitation of these composites in automotive interiors and outdoor decking applications.

9.
Nanomaterials (Basel) ; 12(16)2022 Aug 12.
Article in English | MEDLINE | ID: mdl-36014630

ABSTRACT

Hierarchical functionalization of flax fibers with ZnO nanostructures was achieved by electroless deposition to improve the interfacial adhesion between the natural fibers and synthetic matrix in composite materials. The structural, morphological, thermal and wetting properties of the pristine and ZnO-coated flax fibers were investigated. Thus, the ZnO-coated flax fabric discloses an apparent contact angle of ~140° immediately after the placement of a water droplet on its surface. An assessment of the interfacial adhesion at the yarn scale was also carried out on the flax yarns coated with ZnO nanostructures. Thus, after the ZnO functionalization process, no significant degradation of the tensile properties of the flax yarns occurs. Furthermore, the single yarn fragmentation tests revealed a notable increase in the interfacial adhesion with an epoxy matrix, reductions of 36% and 9% in debonding and critical length values being measured compared to those of the pristine flax yarns, respectively. The analysis of the fracture morphology by scanning electron microscopy and X-ray microtomography highlighted the positive role of ZnO nanostructures in restraining debonding phenomena at the flax fibers/epoxy resin matrix interphase.

10.
Polymers (Basel) ; 14(16)2022 Aug 10.
Article in English | MEDLINE | ID: mdl-36015518

ABSTRACT

Metal 3D-printed parts are critical in industries such as biomedical, surgery, and prosthetics to create tailored components for patients, but the costs associated with traditional metal additive manufacturing (AM) techniques are typically prohibitive. To overcome this disadvantage, more cost-effective manufacturing processes are needed, and a good approach is to combine fused deposition modeling (FDM) with debinding-sintering processes. Furthermore, optimizing the printing parameters is required to improve material density and mechanical performance. The design of experiment (DoE) technique was used to evaluate the impact of three printing factors, namely nozzle temperature, layer thickness, and flow rate, on the tensile and bending properties of sintered 316L stainless steel in this study. Green and sintered samples were morphologically and physically characterized after printing, and the optimal printing settings were determined by statistical analysis, which included the surface response technique. The mechanical properties of the specimens increased as the flow rate and layer thickness increased and the nozzle temperature decreased. The optimized printing parameters for the ranges used in this study include 110% flow rate, 140 µm layer thickness, and 240 °C nozzle temperature, which resulted in sintered parts with a tensile strength of 513 MPa and an elongation at break of about 60%.

11.
Polymers (Basel) ; 14(5)2022 Feb 24.
Article in English | MEDLINE | ID: mdl-35267735

ABSTRACT

In recent years, fluoropolymers have found numerous applications in the architectural field because of their combination of mechanical-chemical resistance and high transparency. In the present work, commercial fluorinated polymers, such as perfluoro alkoxy (PFA) and ethylene tetrafluoroethylene copolymer (ETFE), have been evaluated for use as protective and transparent layers on monumental and archaeological sites (to preserve mosaics or frescoes) during the phases of restoration or maintenance outdoors. Considering this specific application, the present study was developed by evaluating the evolution of the mechanical (tensile, tear propagation resistance, and low-velocity impact tests) and chemical (FTIR and DSC analysis) properties of the films after accelerated UV aging. The results that were obtained demonstrated the high resistance capacity of the ETFE, which exhibits considerably higher elastic modulus and critical tear energy values than PFA films (1075.38 MPa and 131.70 N/mm for ETFE; 625.48 MPa and 59.06 N/mm for PFA). After aging, the samples exhibited only a slight reduction of about 5% in the elastic modulus for both polymers and 10% in the critical tear energy values for PFA. Furthermore, the differences in impact resistance after aging were limited for both polymers; however, the ETFE film showed higher peak force than the PFA films (82.95 N and 42.22 N, respectively). The results obtained demonstrated the high resistance capacity of ETFE films, making them the most suitable candidate for the considered application.

12.
Molecules ; 26(24)2021 Dec 19.
Article in English | MEDLINE | ID: mdl-34946764

ABSTRACT

A poly(urethane-acrylate) polymer (PUA) was synthesized, and a sufficiently high molecular weight starting from urethane-acrylate oligomer (UAO) was obtained. PUA was then loaded with two types of powdered ligno-cellulosic waste, namely from licorice root and palm leaf, in amounts of 1, 5 and 10%, and the obtained composites were chemically and mechanically characterized. FTIR analysis of final PUA synthesized used for the composite production confirmed the new bonds formed during the polymerization process. The degradation temperatures of the two types of waste used were in line with what observed in most common natural fibers with an onset at 270 °C for licorice waste, and at 290 °C for palm leaf one. The former was more abundant in cellulose (44% vs. 12% lignin), whilst the latter was richer in lignin (30% vs. 26% cellulose). In the composites, only a limited reduction of degradation temperature was observed for palm leaf waste addition and some dispersion issues are observed for licorice root, leading to fluctuating results. Tensile performance of the composites indicates some reduction with respect to the pure polymer in terms of tensile strength, though stabilizing between data with 5 and 10% filler. In contrast, Shore A hardness of both composites slightly increases with higher filler content, while in stiffness-driven applications licorice-based composites showed potential due to an increase up to 50% compared to neat PUA. In general terms, the fracture surfaces tend to become rougher with filler introduction, which indicates the need for optimizing interfacial adhesion.


Subject(s)
Acrylic Resins/chemistry , Arecaceae/chemistry , Cellulose/chemistry , Glycyrrhiza/chemistry , Polymers/chemistry , Polyurethanes/chemistry , Acrylic Resins/chemical synthesis , Biodegradation, Environmental , Molecular Structure , Particle Size , Plant Leaves/chemistry , Plant Roots/chemistry , Polymers/chemical synthesis , Polyurethanes/chemical synthesis , Temperature , Tensile Strength
13.
Sensors (Basel) ; 21(17)2021 Sep 05.
Article in English | MEDLINE | ID: mdl-34502852

ABSTRACT

Fibre metal laminates are widely implemented in the aerospace industry owing to the merits of fatigue resistance and plastic properties. An effective defect assessment technique needs to be investigated for this type of composite materials. In order to achieve accurate impact-induced damage evaluation, a multi-excitation infrared fusion method is introduced in this study. Optical excitation thermography with high performance on revealing surface and subsurface defects is combined with vibro-thermography to improve the capability of detection on defects. Quantitative analysis is carried out on the temperature curve to assess the impact-induced deformation. A new image fusion framework including feature extraction, feature selection and fusion steps is proposed to fully utilize the information from two excitation modalities. Six fibre metal laminates which contain aluminium-basalt fibre reinforced plastic and aluminium-glass fibre reinforced plastic are investigated. Features from different perspectives are compared and selected via intensity contrast on deformation area for fusion imaging. Both types of defects (i.e., surface and sub-surface) and the internal deformation situation of these six samples are characterized clearly and intuitively.

14.
Biomolecules ; 11(2)2021 02 01.
Article in English | MEDLINE | ID: mdl-33535423

ABSTRACT

The composites based on basalt fibres and poly(lactic acid) (PLA) show promising applications in biomedical and automotive fields, but their mechanical performance is still largely hindered by poor interfacial properties. Zinc oxide nanorods have been successfully used to tune the PLA/basalt fibre interface by growing them on commercially available basalt fabrics. The hierarchical fibres significantly enhanced the mechanical properties of PLA-based composites, especially their flexural strength and stiffness. These values are 26% and 22% higher than those of unmodified basalt/PLA composites, and 24% and 34% higher than those of glass/PLA composites used as a baseline. The increase in tensile and flexural properties hinges on the mechanical interlocking action promoted by ZnO nanorods and on the creation of a compact transcrystallinity structure. A degradation of PLA matrix was detected but it was positively counteracted by the better interfacial stress transfer. This study offers a novel approach for modifying the fibre-matrix interface of biocomposites intended for high-performance applications.


Subject(s)
Metal Nanoparticles/chemistry , Nanotubes/chemistry , Polyesters/chemistry , Zinc Oxide/chemistry , Biocompatible Materials/chemistry , Calorimetry, Differential Scanning , Crystallization , Glass , Hot Temperature , Kinetics , Materials Testing , Microscopy, Electron, Scanning , Nanocomposites/chemistry , Nanoparticles , Polymers/chemistry , Silicates/chemistry , Stress, Mechanical , Temperature , Tensile Strength , X-Ray Diffraction , Zinc/chemistry
15.
Nanomaterials (Basel) ; 11(2)2021 Feb 06.
Article in English | MEDLINE | ID: mdl-33562142

ABSTRACT

The present research is focused on the synthesis of hexagonal ZnO wurtzite nanorods for the decoration of commercially available electrospun nylon nanofibers. The growth of ZnO was performed by a hydrothermal technique and for the first time on commercial electrospun veils. The growth step was optimized by adopting a procedure with the refresh of growing solution each hour of treatment (Method 1) and with the maintenance of a specific growth solution volume for the entire duration of the treatment (Method 2). The overall treatment time and volume of solution were also optimized by analyzing the morphology of ZnO nanostructures, the coverage degree, the thermal and mechanical stability of the obtained decorated electrospun nanofibers. In the optimal synthesis conditions (Method 2), hexagonal ZnO nanorods with a diameter and length of 53.5 nm ± 5.7 nm and 375.4 nm ± 37.8 nm, respectively, were obtained with a homogeneous and complete coverage of the veils. This easily scalable procedure did not damage the veils that could be potentially used as toughening elements in composites to prevent delamination onset and propagation. The presence of photoreactive species makes these materials ideal also as environmentally friendly photocatalysts for wastewater treatment. In this regard, photocatalytic tests were performed using methylene blue (MB) as model compound. Under UV light irradiation, the degradation of MB followed a first kinetic order data fitting and after 3 h of treatment a MB degradation of 91.0% ± 5.1% was achieved. The reusability of decorated veils was evaluated and a decrease in photocatalysis efficiency was detected after the third cycle of use.

16.
Int J Biol Macromol ; 177: 495-504, 2021 Apr 30.
Article in English | MEDLINE | ID: mdl-33636263

ABSTRACT

Different surface treatments including mercerization, stearic acid and growth of zinc oxide nanorods as well as their combinations were exploited to address their effects on the properties of green composites based on polylactic acid (PLA) and flax fabrics. The resulting fabrics were morphologically (SEM), crystallographically (XRD) and thermally (TGA) characterized, showing no significant changes with respect to the untreated samples. In contrast, tensile and flexural properties of composites produced by compression moulding were significantly influenced. A combination of mercerization and environmentally friendly stearic acid treatment turned the character of the flax fabric from hydrophilic to hydrophobic, and led to improved bending and tensile strengths by 20% and 12%, respectively, compared to untreated composites. The presence of ZnO nanorods promoted an increase in flexural and tensile stiffness by 58% and 31%, respectively, but at the expense of strength, with reductions ascribed to the degradation of polylactic acid under high-temperature conditions favoured by ZnO, as confirmed by a reduction in the initial thermal degradation temperature up to 26%. These latter composites can be suggested in those applications where a suitable combination of flexural properties and a shorter persistence in the environment is desired.


Subject(s)
Flax/chemistry , Nanostructures/chemistry , Polyesters/chemistry , Stearic Acids/chemistry , Textiles , Zinc Oxide/chemistry
17.
Polymers (Basel) ; 14(1)2021 Dec 30.
Article in English | MEDLINE | ID: mdl-35012153

ABSTRACT

Cork, a natural material from renewable resources, is currently attracting increasing interest in different industrial fields because of its cellular structure and the presence of the flexible suberin as its main chemical component. In an agglomerated form, it proved to be a compelling product not only as a thermal and acoustic insulator, but also as core material in sandwich structures and as a liner or padding in energy absorbing equipment. From this perspective, the assessment of its compressive response is fundamental to ensure the right out-of-plane stiffness required to a core material and the proper crashworthiness in the safety devices. Considering the complex nature of cork and the resulting peculiar compressive response, the present review article provides an overview of this paramount property, assessing the main parameters (anisotropy, temperature, strain rate, etc.) and the peculiar features (near-zero Poisson's ratio and unique dimensional recovery) that characterize it in its natural state. Furthermore, considering its massive exploitation in the agglomerated form, the design parameters that allow its compressive behavior to be tailored and the operating parameters that can affect its crashworthiness were assessed, reporting some potential industrial applications.

18.
Molecules ; 25(19)2020 Sep 24.
Article in English | MEDLINE | ID: mdl-32987669

ABSTRACT

This study deals with the development and optimization of hybrid composites integrating microcrystalline cellulose and short basalt fibers in a polypropylene (PP) matrix to maximize the mechanical properties of resulting composites. To this aim, the effects of two different coupling agents, endowed with maleic anhydride (MA-g(grafted)-PP) and acrylic acid (AA-g-PP) functionalities, on the composite properties were investigated as a function of their amount. Tensile, flexural, impact and heat deflection temperature tests highlighted the lower reactivity and effectiveness of AA-g-PP, regardless of reinforcement type. Hybrid formulations with basalt/cellulose (15/15) and with 5 wt. % of MA-g-PP displayed remarkable increases in tensile strength and modulus, flexural strength and modulus, and notched Charpy impact strength, of 45% and 284%, 97% and 263%, and 13%, in comparison with neat PP, respectively. At the same time, the thermo-mechanical stability was enhanced by 65% compared to neat PP. The results of this study, if compared with the ones available in the literature, reveal the ability of such a combination of reinforcements to provide materials suitable for automotive applications with environmental benefits.


Subject(s)
Cellulose/chemistry , Materials Testing , Polypropylenes/chemistry , Silicates/chemistry
19.
Polymers (Basel) ; 12(8)2020 Aug 12.
Article in English | MEDLINE | ID: mdl-32806698

ABSTRACT

A thermoplastic starch (TPS) material is developed, based on corn starch plasticized with glycerol and citric acid in a 9:3:1 ratio and further bonded with isinglass and mono- and diglycerides of fatty acids (E471). In TPS, leather fragments, in the amount of 7.5 15 or 22.5 g/100 g of dry matter, were also introduced. The mixture was heated at a maximum temperature of 80 °C, then cast in an open mold to obtain films with thickness in the range 300 ± 50 microns. The leather fragments used were based on collagen obtained from production waste from shoemaking and tanned with tannins obtained from smoketree (Rhus cotinus), therefore free from chromium. Thermogravimetric (TGA) tests suggested that material degradation started at a temperature around 285 °C, revealing that the presence of leather fragments did not influence the occurrence of this process in TPS. Tensile tests indicated an increase in tensile properties (strength and Young's modulus) with increasing leather content, albeit coupled, especially at 22.5 wt%, with a more pronounced brittle behavior. Leather waste provided a sound interface with the bulk of the composite, as observed under scanning electron microscopy. The production process indicated a very limited degradation of the material after exposure to UV radiation for eight days, as demonstrated by the slight attenuation of amide I (collagen) and polysaccharide FTIR peaks. Reheating at 80 °C resulted in a weight loss not exceeding 3%.

20.
Polymers (Basel) ; 12(5)2020 May 20.
Article in English | MEDLINE | ID: mdl-32443681

ABSTRACT

The use of wood fibers is a deeply investigated topic in current scientific research and one of their most common applications is as filler for thermoplastic polymers. The resulting material is a biocomposite, known as a Wood Polymer Composite (WPC). For increasing the sustainability and reducing the cost, it is convenient to increase the wood fiber content as much as possible, so that the polymeric fraction within the composite is thereby reduced. On the other hand, this is often thwarted by a sharp decrease in toughness and processability-a disadvantage that could be overcome by compounding the material with a toughening agent. This work deals with the mechanical properties in tension and impact of polypropylene filled with 50 wt.% wood flour, toughened with different amounts (0%, 10%, and 20%) of a polypropylene-based thermoplastic vulcanizate (TPV). Such properties are also investigated as a function of extrusion processing variables, such as the feeding mode (i.e., starve vs. flood feeding) and screw speed. It is found that the mechanical properties do depend on the processing conditions: the best properties are obtained either in starve feeding conditions, or in flood feeding conditions, but at a low screw speed. The toughening effect of TPV is significant when its content reaches 20 wt.%. For this percentage, the processing conditions are less relevant in governing the final properties of the composites in terms of the stiffness and strength.

SELECTION OF CITATIONS
SEARCH DETAIL
...