Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 20
Filter
Add more filters










Publication year range
1.
Nano Lett ; 22(15): 6135-6140, 2022 08 10.
Article in English | MEDLINE | ID: mdl-35899996

ABSTRACT

Real-time thermal sensing on flexible substrates could enable a plethora of new applications. However, achieving fast, sub-millisecond response times even in a single sensor is difficult, due to the thermal mass of the sensor and encapsulation. Here, we fabricate flexible monolayer molybdenum disulfide (MoS2) temperature sensors and arrays, which can detect temperature changes within a few microseconds, over 100× faster than flexible thin-film metal sensors. Thermal simulations indicate the sensors' response time is only limited by the MoS2 interfaces and encapsulation. The sensors also have high temperature coefficient of resistance, ∼1-2%/K and stable operation upon cycling and long-term measurement when they are encapsulated with alumina. These results, together with their biocompatibility, make these devices excellent candidates for biomedical sensor arrays and many other Internet of Things applications.


Subject(s)
Disulfides , Molybdenum , Temperature
2.
ACS Nano ; 16(6): 8827-8836, 2022 Jun 28.
Article in English | MEDLINE | ID: mdl-35435652

ABSTRACT

A rapid surge in global energy consumption has led to a greater demand for renewable energy to overcome energy resource limitations and environmental problems. Recently, a number of van der Waals materials have been highlighted as efficient absorbers for very thin and highly efficient photovoltaic (PV) devices. Despite the predicted potential, achieving power conversion efficiencies (PCEs) above 5% in PV devices based on van der Waals materials has been challenging. Here, we demonstrate a vertical WSe2 PV device with a high PCE of 5.44% under one-sun AM1.5G illumination. We reveal the multifunctional nature of a tungsten oxide layer, which promotes a stronger internal electric field by overcoming limitations imposed by the Fermi-level pinning at WSe2 interfaces and acts as an electron-selective contact in combination with monolayer graphene. Together with the developed bottom contact scheme, this simple yet effective contact engineering method improves the PCE by more than five times.

3.
Nat Commun ; 12(1): 7034, 2021 Dec 09.
Article in English | MEDLINE | ID: mdl-34887383

ABSTRACT

Semiconducting transition metal dichalcogenides (TMDs) are promising for flexible high-specific-power photovoltaics due to their ultrahigh optical absorption coefficients, desirable band gaps and self-passivated surfaces. However, challenges such as Fermi-level pinning at the metal contact-TMD interface and the inapplicability of traditional doping schemes have prevented most TMD solar cells from exceeding 2% power conversion efficiency (PCE). In addition, fabrication on flexible substrates tends to contaminate or damage TMD interfaces, further reducing performance. Here, we address these fundamental issues by employing: (1) transparent graphene contacts to mitigate Fermi-level pinning, (2) MoOx capping for doping, passivation and anti-reflection, and (3) a clean, non-damaging direct transfer method to realize devices on lightweight flexible polyimide substrates. These lead to record PCE of 5.1% and record specific power of 4.4 W g-1 for flexible TMD (WSe2) solar cells, the latter on par with prevailing thin-film solar technologies cadmium telluride, copper indium gallium selenide, amorphous silicon and III-Vs. We further project that TMD solar cells could achieve specific power up to 46 W g-1, creating unprecedented opportunities in a broad range of industries from aerospace to wearable and implantable electronics.

4.
Nano Lett ; 21(8): 3443-3450, 2021 Apr 28.
Article in English | MEDLINE | ID: mdl-33852295

ABSTRACT

Layered semiconducting transition metal dichalcogenides (TMDs) are promising materials for high-specific-power photovoltaics due to their excellent optoelectronic properties. However, in practice, contacts to TMDs have poor charge carrier selectivity, while imperfect surfaces cause recombination, leading to a low open-circuit voltage (VOC) and therefore limited power conversion efficiency (PCE) in TMD photovoltaics. Here, we simultaneously address these fundamental issues with a simple MoOx (x ≈ 3) surface charge-transfer doping and passivation method, applying it to multilayer tungsten disulfide (WS2) Schottky-junction solar cells with initially near-zero VOC. Doping and passivation turn these into lateral p-n junction photovoltaic cells with a record VOC of 681 mV under AM 1.5G illumination, the highest among all p-n junction TMD solar cells with a practical design. The enhanced VOC also leads to record PCE in ultrathin (<90 nm) WS2 photovoltaics. This easily scalable doping and passivation scheme is expected to enable further advances in TMD electronics and optoelectronics.

5.
ACS Nano ; 13(9): 10294-10300, 2019 09 24.
Article in English | MEDLINE | ID: mdl-31469532

ABSTRACT

Layered two-dimensional (2D) materials have entered the spotlight as promising channel materials for future optoelectronic devices owing to their excellent electrical and optoelectronic properties. However, their limited photodetection range caused by their wide bandgap remains a principal challenge in 2D layered materials-based phototransistors. Here, we developed a germanium (Ge)-gated MoS2 phototransistor that can detect light in the region from visible to infrared (λ = 520-1550 nm) using a detection mechanism based on band bending modulation. In addition, the Ge-gated MoS2 phototransistor is proposed as a multilevel optic-neural synaptic device, which performs both optical-sensing and synaptic functions on one device and is operated in different current ranges according to the light conditions: dark, visible, and infrared. This study is expected to contribute to the development of 2D material-based phototransistors and synaptic devices in next-generation optoelectronics.


Subject(s)
Disulfides/chemistry , Infrared Rays , Molybdenum/chemistry , Neurons/physiology , Optical Phenomena , Synapses/physiology , Transistors, Electronic , Thermodynamics , Time Factors
6.
ACS Appl Mater Interfaces ; 9(48): 41863-41870, 2017 Dec 06.
Article in English | MEDLINE | ID: mdl-29124928

ABSTRACT

In this paper, the integration of metal oxides as carrier-selective contacts for ultrathin crystalline silicon (c-Si) solar cells is demonstrated which results in an ∼13% relative improvement in efficiency. The improvement in efficiency originates from the suppression of the contact recombination current due to the band offset asymmetry of these oxides with Si. First, an ultrathin c-Si solar cell having a total thickness of 2 µm is shown to have >10% efficiency without any light-trapping scheme. This is achieved by the integration of nickel oxide (NiOx) as a hole-selective contact interlayer material, which has a low valence band offset and high conduction band offset with Si. Second, we show a champion cell efficiency of 10.8% with the additional integration of titanium oxide (TiOx), a well-known material for an electron-selective contact interlayer. Key parameters including Voc and Jsc also show different degrees of enhancement if single (NiOx only) or double (both NiOx and TiOx) carrier-selective contacts are integrated. The fabrication process for TiOx and NiOx layer integration is scalable and shows good compatibility with the device.

8.
ACS Appl Mater Interfaces ; 9(20): 17201-17207, 2017 May 24.
Article in English | MEDLINE | ID: mdl-28447776

ABSTRACT

Drastic reduction in nickel oxide (NiOx) film resistivity and ionization potential is observed when subjected to ultraviolet (UV)/ozone (O3) treatment. X-ray photoemission spectroscopy suggests that UV/O3 treatment changes the film stoichiometry by introducing Ni vacancy defects. Oxygen-rich NiOx having Ni vacancy defects behaves as a p-type semiconductor. Therefore, in this work, a simple and effective technique to introduce doping in NiOx is shown. Angle-resolved XPS reveals that the effect of UV/O3 treatment does not only alter the film surface property but also introduces oxygen-rich stoichiometry throughout the depth of the film. Finally, simple metal/interlayer/semiconductor (MIS) contacts are fabricated on p-type Si using NiOx as the interlayer and different metals. Significant barrier height reduction is observed with respect to the control sample following UV/O3 treatment, which is in agreement with the observed reduction in film resistivity. From an energy band diagram point of view, the introduction of the UV/O3 treatment changes the defect state distribution, resulting in a change in the pinning of the Fermi level. Therefore, this work also shows that the Fermi level pinning property of NiOx can be controlled using UV/O3 treatment.

9.
Nano Lett ; 16(6): 3824-30, 2016 06 08.
Article in English | MEDLINE | ID: mdl-27232636

ABSTRACT

The scaling of transistors to sub-10 nm dimensions is strongly limited by their contact resistance (RC). Here we present a systematic study of scaling MoS2 devices and contacts with varying electrode metals and controlled deposition conditions, over a wide range of temperatures (80 to 500 K), carrier densities (10(12) to 10(13) cm(-2)), and contact dimensions (20 to 500 nm). We uncover that Au deposited in ultra-high vacuum (∼10(-9) Torr) yields three times lower RC than under normal conditions, reaching 740 Ω·µm and specific contact resistivity 3 × 10(-7) Ω·cm(2), stable for over four months. Modeling reveals separate RC contributions from the Schottky barrier and the series access resistance, providing key insights on how to further improve scaling of MoS2 contacts and transistor dimensions. The contact transfer length is ∼35 nm at 300 K, which is verified experimentally using devices with 20 nm contacts and 70 nm contact pitch (CP), equivalent to the "14 nm" technology node.

10.
Nano Lett ; 16(4): 2168-73, 2016 Apr 13.
Article in English | MEDLINE | ID: mdl-26907359

ABSTRACT

A silicon-compatible light source is the final missing piece for completing high-speed, low-power on-chip optical interconnects. In this paper, we present a germanium nanowire light emitter that encompasses all the aspects of potential low-threshold lasers: highly strained germanium gain medium, strain-induced pseudoheterostructure, and high-Q nanophotonic cavity. Our nanowire structure presents greatly enhanced photoluminescence into cavity modes with measured quality factors of up to 2000. By varying the dimensions of the germanium nanowire, we tune the emission wavelength over more than 400 nm with a single lithography step. We find reduced optical loss in optical cavities formed with germanium under high (>2.3%) tensile strain. Our compact, high-strain cavities open up new possibilities for low-threshold germanium-based lasers for on-chip optical interconnects.

11.
Opt Express ; 23(13): 16740-9, 2015 Jun 29.
Article in English | MEDLINE | ID: mdl-26191686

ABSTRACT

Strain engineering has proven to be vital for germanium-based photonics, in particular light emission. However, applying a large permanent biaxial tensile strain to germanium has been a challenge. We present a simple, CMOS-compatible technique to conveniently induce a large, spatially homogenous strain in circular structures patterned within germanium nanomembranes. Our technique works by concentrating and amplifying a pre-existing small strain into a circular region. Biaxial tensile strains as large as 1.11% are observed by Raman spectroscopy and are further confirmed by photoluminescence measurements, which show enhanced and redshifted light emission from the strained germanium. Our technique allows the amount of biaxial strain to be customized lithographically, allowing the bandgaps of different germanium structures to be independently customized in a single mask process.

12.
Opt Express ; 23(12): 15816-23, 2015 Jun 15.
Article in English | MEDLINE | ID: mdl-26193560

ABSTRACT

A germanium-on-insulator (GOI) p-i-n photodetector, monolithically integrated on a silicon (Si) substrate, is demonstrated. GOI is formed by lateral-overgrowth (LAT-OVG) of Ge on silicon dioxide (SiO(2)) through windows etched in SiO(2) on Si. The photodetector shows excellent diode characteristics with high on/off ratio (6 × 10(4)), low dark current, and flat reverse current-voltage (I-V) characteristics. Enhanced light absorption up to 1550 nm is observed due to the residual biaxial tensile strain induced during the epitaxial growth of Ge caused by cooling after the deposition. This truly Si-compatible Ge photodetector using monolithic integration enables new opportunities for high-performance GOI based photonic devices on Si platform.

13.
Opt Express ; 23(26): 33249-54, 2015 Dec 28.
Article in English | MEDLINE | ID: mdl-26831991

ABSTRACT

We present germanium microdisk optical resonators under a large biaxial tensile strain using a CMOS-compatible fabrication process. Biaxial tensile strain of ~0.7% is achieved by means of a stress concentration technique that allows the strain level to be customized by carefully selecting certain lithographic dimensions. The partial strain relaxation at the edges of a patterned germanium microdisk is compensated by depositing compressively stressed silicon nitride layer. Two-dimensional Raman spectroscopy measurements along with finite-element method simulations confirm a relatively homogeneous strain distribution within the final microdisk structure. Photoluminescence results show clear optical resonances due to whispering gallery modes which are in good agreement with finite-difference time-domain optical simulations. Our bandgap-customizable microdisks present a new route towards an efficient germanium light source for on-chip optical interconnects.

14.
Opt Lett ; 39(21): 6205-8, 2014 Nov 01.
Article in English | MEDLINE | ID: mdl-25361315

ABSTRACT

We report improved minority carrier lifetimes in n-type-doped and tensile-strained germanium by measuring direct bandgap photoluminescence from germanium-on-insulator substrates with various levels of defect density. We first describe a method to fabricate a high-quality germanium-on-insulator substrate by employing direct wafer bonding and chemical-mechanical polishing. Raman spectroscopy measurement was performed to assess the purity of the transferred layer on an insulator. Using time-resolved photoluminescence decay measurement, we observe that minority carrier lifetimes can be improved by over a factor of 3 as the defective top interface of our material stack is removed. Our high-quality germanium-on-insulator should be an ideal platform for high-performance, germanium-based photonic devices for on-chip optical interconnects.

15.
Nano Lett ; 14(1): 37-43, 2014 Jan 08.
Article in English | MEDLINE | ID: mdl-24299070

ABSTRACT

We theoretically study and experimentally demonstrate a pseudomorphic Ge/Ge0.92Sn0.08/Ge quantum-well microdisk resonator on Ge/Si (001) as a route toward a compact GeSn-based laser on silicon. The structure theoretically exhibits many electronic and optical advantages in laser design, and microdisk resonators using these structures can be precisely fabricated away from highly defective regions in the Ge buffer using a novel etch-stop process. Photoluminescence measurements on 2.7 µm diameter microdisks reveal sharp whispering-gallery-mode resonances (Q > 340) with strong luminescence.

16.
Nano Lett ; 13(8): 3783-90, 2013 Aug 14.
Article in English | MEDLINE | ID: mdl-23834495

ABSTRACT

We present a new etch chemistry that enables highly selective dry etching of germanium over its alloy with tin (Ge(1-x)Sn(x)). We address the challenges in synthesis of high-quality, defect-free Ge(1-x)Sn(x) thin films by using Ge virtual substrates as a template for Ge(1-x)Sn(x) epitaxy. The etch process is applied to selectively remove the stress-inducing Ge virtual substrate and achieve strain-free, direct band gap Ge0.92Sn0.08. The semiconductor processing technology presented in this work provides a robust method for fabrication of innovative Ge(1-x)Sn(x) nanostructures whose realization can prove to be challenging, if not impossible, otherwise.

17.
Nano Lett ; 13(7): 3118-23, 2013 Jul 10.
Article in English | MEDLINE | ID: mdl-23758608

ABSTRACT

Semiconductor heterostructures play a vital role in photonics and electronics. They are typically realized by growing layers of different materials, complicating fabrication and limiting the number of unique heterojunctions on a wafer. In this Letter, we present single-material nanowires which behave exactly like traditional heterostructures. These pseudoheterostructures have electronic band profiles that are custom-designed at the nanoscale by strain engineering. Since the band profile depends only on the nanowire geometry with this approach, arbitrary band profiles can be individually tailored at the nanoscale using existing nanolithography. We report the first experimental observations of spatially confined, greatly enhanced (>200×), and wavelength-shifted (>500 nm) emission from strain-induced potential wells that facilitate effective carrier collection at room temperature. This work represents a fundamentally new paradigm for creating nanoscale devices with full heterostructure behavior in photonics and electronics.

18.
Opt Lett ; 32(14): 2022-4, 2007 Jul 15.
Article in English | MEDLINE | ID: mdl-17632630

ABSTRACT

We propose a novel semiconductor optoelectronic switch that is a fusion of a Ge optical detector and a Si metal-oxide semiconductor field-effect transistor (MOSFET). The device operation is investigated with simulations and experiments. The switch can be fabricated at the nanoscale with extremely low capacitance. This device operates in telecommunication standard wavelengths, hence providing the surrounding Si circuitry with noise immunity from signaling. The Ge gate absorbs light, and the gate photocurrent is amplified at the drain terminal. Experimental current gain of up to 1000x is demonstrated. The device exhibits increased responsivity (approximately 3.5x) and lower off-state current (approximately 4x) compared with traditional detector schemes.

19.
Opt Lett ; 31(17): 2565-7, 2006 Sep 01.
Article in English | MEDLINE | ID: mdl-16902620

ABSTRACT

We demonstrate extremely efficient germanium-on-silicon metal-semiconductor-metal photodetectors with responsivities (R) as high as 0.85 A/W at 1.55 microm and 2V reverse bias. Ge was directly grown on Si by using a novel heteroepitaxial growth technique, which uses multisteps of growth and hydrogen annealing to reduce surface roughness and threading dislocations that form due to the 4.2% lattice mismatch. Photodiodes on such layers exhibit reverse dark currents of 100 mA/cm2 and external quantum efficiency up to 68%. This technology is promising to realize monolithically integrated optoelectronics.

20.
Opt Lett ; 31(10): 1519-21, 2006 May 15.
Article in English | MEDLINE | ID: mdl-16642158

ABSTRACT

We present a C-shaped nanoaperture-enhanced Ge photodetector that shows 2-5 times the photocurrent enhancement over that from a square aperture of the same area at 1310 nm wavelength. We demonstrate the polarization dependence of the C-aperture photodetector over a wide wavelength range. Our experimental observation agrees well with finite-difference time-domain simulation results.

SELECTION OF CITATIONS
SEARCH DETAIL
...