Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Nature ; 623(7988): 828-835, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37968399

ABSTRACT

The skin epidermis is constantly renewed throughout life1,2. Disruption of the balance between renewal and differentiation can lead to uncontrolled growth and tumour initiation3. However, the ways in which oncogenic mutations affect the balance between renewal and differentiation and lead to clonal expansion, cell competition, tissue colonization and tumour development are unknown. Here, through multidisciplinary approaches that combine in vivo clonal analysis using intravital microscopy, single-cell analysis and functional analysis, we show how SmoM2-a constitutively active oncogenic mutant version of Smoothened (SMO) that induces the development of basal cell carcinoma-affects clonal competition and tumour initiation in real time. We found that expressing SmoM2 in the ear epidermis of mice induced clonal expansion together with tumour initiation and invasion. By contrast, expressing SmoM2 in the back-skin epidermis led to a clonal expansion that induced lateral cell competition without dermal invasion and tumour formation. Single-cell analysis showed that oncogene expression was associated with a cellular reprogramming of adult interfollicular cells into an embryonic hair follicle progenitor (EHFP) state in the ear but not in the back skin. Comparisons between the ear and the back skin revealed that the dermis has a very different composition in these two skin types, with increased stiffness and a denser collagen I network in the back skin. Decreasing the expression of collagen I in the back skin through treatment with collagenase, chronic UV exposure or natural ageing overcame the natural resistance of back-skin basal cells to undergoing EHFP reprogramming and tumour initiation after SmoM2 expression. Altogether, our study shows that the composition of the extracellular matrix regulates how susceptible different regions of the body are to tumour initiation and invasion.


Subject(s)
Cell Transformation, Neoplastic , Extracellular Matrix , Skin Neoplasms , Tumor Microenvironment , Animals , Mice , Cell Transformation, Neoplastic/metabolism , Cell Transformation, Neoplastic/pathology , Collagen/metabolism , Epidermis/pathology , Extracellular Matrix/metabolism , Extracellular Matrix/pathology , Skin Neoplasms/pathology , Carcinoma, Basal Cell/pathology , Ear/pathology , Collagenases/metabolism , Aging , Ultraviolet Rays , Mutant Proteins/genetics , Mutant Proteins/metabolism
2.
Nature ; 620(7973): 402-408, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37532929

ABSTRACT

Epithelial-to-mesenchymal transition (EMT) regulates tumour initiation, progression, metastasis and resistance to anti-cancer therapy1-7. Although great progress has been made in understanding the role of EMT and its regulatory mechanisms in cancer, no therapeutic strategy to pharmacologically target EMT has been identified. Here we found that netrin-1 is upregulated in a primary mouse model of skin squamous cell carcinoma (SCC) exhibiting spontaneous EMT. Pharmacological inhibition of netrin-1 by administration of NP137, a netrin-1-blocking monoclonal antibody currently used in clinical trials in human cancer (ClinicalTrials.gov identifier NCT02977195 ), decreased the proportion of EMT tumour cells in skin SCC, decreased the number of metastases and increased the sensitivity of tumour cells to chemotherapy. Single-cell RNA sequencing revealed the presence of different EMT states, including epithelial, early and late hybrid EMT, and full EMT states, in control SCC. By contrast, administration of NP137 prevented the progression of cancer cells towards a late EMT state and sustained tumour epithelial states. Short hairpin RNA knockdown of netrin-1 and its receptor UNC5B in EPCAM+ tumour cells inhibited EMT in vitro in the absence of stromal cells and regulated a common gene signature that promotes tumour epithelial state and restricts EMT. To assess the relevance of these findings to human cancers, we treated mice transplanted with the A549 human cancer cell line-which undergoes EMT following TGFß1 administration8,9-with NP137. Netrin-1 inhibition decreased EMT in these transplanted A549 cells. Together, our results identify a pharmacological strategy for targeting EMT in cancer, opening up novel therapeutic interventions for anti-cancer therapy.


Subject(s)
Antibodies, Monoclonal , Carcinoma, Squamous Cell , Epithelial-Mesenchymal Transition , Netrin-1 , Skin Neoplasms , Animals , Humans , Mice , A549 Cells , Carcinoma, Squamous Cell/drug therapy , Carcinoma, Squamous Cell/pathology , Cell Line, Tumor , Epithelial-Mesenchymal Transition/drug effects , Netrin Receptors/antagonists & inhibitors , Netrin Receptors/deficiency , Netrin Receptors/genetics , Netrin-1/antagonists & inhibitors , Netrin-1/deficiency , Netrin-1/genetics , RNA, Small Interfering/genetics , RNA, Small Interfering/pharmacology , Disease Models, Animal , Skin Neoplasms/drug therapy , Skin Neoplasms/pathology , Antibodies, Monoclonal/pharmacology , Antibodies, Monoclonal/therapeutic use , Neoplasm Metastasis/drug therapy , Single-Cell Gene Expression Analysis , RNA-Seq , Epithelial Cell Adhesion Molecule/metabolism , Xenograft Model Antitumor Assays , Transforming Growth Factor beta1/pharmacology
3.
Stem Cells ; 40(9): 802-817, 2022 09 26.
Article in English | MEDLINE | ID: mdl-35689817

ABSTRACT

Wnt signaling plays a pivotal role in regulating activation, proliferation, stem cell renewal, and differentiation of hair follicle stem cells (HFSCs). Secreted frizzled-related protein 1 (Sfrp1), a Wnt antagonist is upregulated in the HFSCs; however, its role in the HFSCs regulation is still obscure. Here, we show that Sfrp1 loss showed a depletion of HFSCs, enhanced HFSC proliferation, and faster hair follicle cycle at PD21-PD28; HFSC markers, such as Lgr5 and Axin2, were decreased in both the Sfrp1+/- and Sfrp1-/- HFSCs. In addition, the second hair follicle cycle was also faster compared with WT. Importantly, Sfrp1-/- showed a restoration of HFSC by second telogen (PD49), whereas Sfrp1+/- did not show restoration with still having a decreased HFSC. In fact, restoration of HFSCs was due to a pronounced downregulation of ß-catenin activity mediated through a cross-talk of BMP-AKT-GSK3ß signaling in Sfrp1-/- compared with Sfrp1+/-, where downregulation was less pronounced. In cultured keratinocytes, Sfrp1 loss resulted in enhanced proliferation and clonogenicity, which were reversed by treating with either BMPR1A or GSK3ß inhibitor thereby confirming BMP-AKT-GSK3ß signaling involved in ß-catenin regulation in both the Sfrp1+/- and Sfrp1-/- mice. Our study reveals a novel function of Sfrp1 by unraveling an in vivo molecular mechanism that regulates the HFSCs pool mediated through a hitherto unknown cross-talk of BMP-AKT-GSK3ß signaling that maintains stem cell pool balance, which in turn maintains skin tissue homeostasis.


Subject(s)
Hair Follicle , Membrane Proteins/metabolism , beta Catenin , Animals , Glycogen Synthase Kinase 3 beta/metabolism , Intracellular Signaling Peptides and Proteins , Membrane Proteins/genetics , Mice , Proto-Oncogene Proteins c-akt/metabolism , Stem Cells/metabolism , Wnt Signaling Pathway/physiology , beta Catenin/metabolism
4.
Sci Rep ; 10(1): 4951, 2020 Mar 13.
Article in English | MEDLINE | ID: mdl-32170155

ABSTRACT

An amendment to this paper has been published and can be accessed via a link at the top of the paper.

5.
Stem Cell Reports ; 14(2): 271-284, 2020 02 11.
Article in English | MEDLINE | ID: mdl-31928951

ABSTRACT

Wnt signaling is involved in the regulation of cancer stem cells (CSCs); however, the molecular mechanism involved is still obscure. SFRP1, a Wnt inhibitor, is downregulated in various human cancers; however, its role in tumor initiation and CSC regulation remains unexplored. Here, we used a skin carcinogenesis model, which showed early tumor initiation in Sfrp1-/- (Sfrp1 knockout) mice and increased tumorigenic potential of Sfrp1-/- CSCs. Expression profiling on Sfrp1-/- CSCs showed upregulation of genes involved in epithelial to mesenchymal transition, stemness, proliferation, and metastasis. Further, SOX-2 and SFRP1 expression was validated in human skin cutaneous squamous cell carcinoma, head and neck squamous cell carcinoma, and breast cancer. The data showed downregulation of SFRP1 and upregulation of SOX-2, establishing their inverse correlation. Importantly, we broadly uncover an inverse correlation of SFRP1 and SOX-2 in epithelial cancers that may be used as a potential prognostic marker in the management of cancer.


Subject(s)
Carcinogenesis/metabolism , Epithelium/pathology , Membrane Proteins/metabolism , Neoplastic Stem Cells/pathology , Skin Neoplasms/pathology , Animals , Carcinogenesis/pathology , Carcinoma, Squamous Cell/genetics , Carcinoma, Squamous Cell/pathology , Disease Progression , Epithelial-Mesenchymal Transition/genetics , Gene Expression Regulation, Neoplastic , Intercellular Signaling Peptides and Proteins/metabolism , Membrane Proteins/deficiency , Mice , Neoplastic Stem Cells/metabolism , SOXB1 Transcription Factors/metabolism , Signal Transduction , Skin Neoplasms/genetics , Skin Neoplasms/metabolism , Up-Regulation/genetics
6.
Sci Rep ; 7(1): 11619, 2017 09 14.
Article in English | MEDLINE | ID: mdl-28912581

ABSTRACT

Secretory phospholipase A2 Group-IIA (sPLA2-IIA) is involved in lipid catabolism and growth promoting activity. sPLA2-IIA is deregulated in many pathological conditions including various cancers. Here, we have studied the role of sPLA2-IIA in the development of cyclic alopecia and wound healing response in relation to complete loss of hair follicle stem cells (HFSCs). Our data showed that overexpression of sPLA2-IIA in homozygous mice results in hyperproliferation and terminal epidermal differentiation followed by hair follicle cycle being halted at anagen like stage. In addition, sPLA2-IIA induced hyperproliferation leads to compl pathological conditions including various cancers. Here ete exhaustion of hair follicle stem cell pool at PD28 (Postnatal day). Importantly, sPLA2-IIA overexpression affects the hair shaft differentiation leading to development of cyclic alopecia. Molecular investigation study showed aberrant expression of Sox21, Msx2 and signalling modulators necessary for proper differentiation of inner root sheath (IRS) and hair shaft formation. Further, full-thickness skin wounding on dorsal skin of K14-sPLA2-IIA homozygous mice displayed impaired initial healing response. Our results showed the involvement of sPLA2-IIA in regulation of matrix cells differentiation, hair shaft formation and complete loss of HFSCs mediated impaired wound healing response. These novel functions of sPLA2-IIA may have clinical implications in alopecia, cancer development and ageing.


Subject(s)
Alopecia/etiology , Alopecia/pathology , Group II Phospholipases A2/genetics , Hair Follicle/metabolism , Hair Follicle/pathology , Hair/pathology , Wound Healing/genetics , Alopecia/metabolism , Animals , Biomarkers , Disease Models, Animal , Fluorescent Antibody Technique , Gene Expression Regulation , Genotype , Group II Phospholipases A2/metabolism , Mice , Mice, Transgenic , Phenotype , Signal Transduction
7.
Stem Cells ; 34(9): 2407-17, 2016 09.
Article in English | MEDLINE | ID: mdl-27299855

ABSTRACT

Secretory phospholipase A2 Group-IIA (sPLA2 -IIA) catalyzes the hydrolysis of the sn-2 position of glycerophospholipids to yield fatty acids and lysophospholipids. sPLA2 -IIA is deregulated in various cancers; however, its role in hair follicle stem cell (HFSC) regulation is obscure. Here we report a transgenic mice overexpressing sPLA2 -IIA (K14-sPLA2 -IIA) showed depletion of HFSC pool. This was accompanied with increased differentiation, loss of ortho-parakeratotic organization and enlargement of sebaceous gland, infundibulum and junctional zone. The colony forming efficiency of keratinocytes was significantly reduced. Microarray profiling of HFSCs revealed enhanced level of epithelial mitogens and transcription factors, c-Jun and FosB that may be involved in proliferation and differentiation. Moreover, K14-sPLA2 -IIA keratinocytes showed enhanced activation of EGFR and JNK1/2 that led to c-Jun activation, which co-related with enhanced differentiation. Further, depletion of stem cells in bulge is associated with high levels of chromatin silencing mark, H3K27me3 and low levels of an activator mark, H3K9ac suggestive of alteration in gene expression contributing toward stem cells differentiation. Our results, first time uncovered that overexpression of sPLA2 -IIA lead to depletion of HFSCs and differentiation associated with altered histone modification. Thus involvement of sPLA2 -IIA in stem cells regulation and disease pathogenesis suggest its prospective clinical implications. Stem Cells 2016;34:2407-2417.


Subject(s)
Cell Differentiation , Epidermis/enzymology , Group II Phospholipases A2/metabolism , Hair Follicle/cytology , JNK Mitogen-Activated Protein Kinases/metabolism , Proto-Oncogene Proteins c-jun/metabolism , Stem Cells/cytology , Aging/metabolism , Animals , Cell Proliferation , Enzyme Activation , ErbB Receptors/metabolism , Gene Expression Profiling , Histones/metabolism , Homeostasis , Hyperplasia , Keratinocytes/metabolism , Lysine/metabolism , Methylation , Mice, Transgenic , Parakeratosis/pathology , Sebaceous Glands/pathology , Signal Transduction , Stem Cells/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...