Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 32
Filter
Add more filters










Publication year range
1.
J Pharmacol Exp Ther ; 345(2): 260-70, 2013 May.
Article in English | MEDLINE | ID: mdl-23435542

ABSTRACT

Activation of muscarinic subtype 3 (M3) muscarinic cholinergic receptors (mAChRs) increases airway tone, whereas its blockade improves lung function and quality of life in patients with pulmonary diseases. The present study evaluated the pharmacological properties of a novel mAChR antagonist, GSK573719 (4-[hydroxy(diphenyl)methyl]-1-{2-[(phenylmethyl)oxy]ethyl}-1-azoniabicyclo[2.2.2]octane; umeclidinium). The affinity (Ki) of GSK573719 for the cloned human M1-M5 mAChRs ranged from 0.05 to 0.16 nM. Dissociation of [(3)H]GSK573719 from the M3 mAChR was slower than that for the M2 mAChR [half-life (t1/2) values: 82 and 9 minutes, respectively]. In Chinese hamster ovary cells transfected with recombinant human M3 mAChRs, GSK573719 demonstrated picomolar potency (-log pA2 = 23.9 pM) in an acetylcholine (Ach)-mediated Ca(2+) mobilization assay. Concentration-response curves indicate competitive antagonism with partial reversibility after drug washout. Using isolated human bronchial strips, GSK573719 was also potent and showed competitive antagonism (-log pA2 = 316 pM) versus carbachol, and was slowly reversible in a concentration-dependent manner (1-100 nM). The time to 50% restoration of contraction at 10 nM was about 381 minutes (versus 413 minutes for tiotropium bromide). In mice, the ED50 value was 0.02 µg/mouse intranasally. In conscious guinea pigs, intratracheal administration of GSK573719 dose dependently blocked Ach-induced bronchoconstriction with long duration of action, and was comparable to tiotropium; 2.5 µg elicited 50% bronchoprotection for >24 hours. Thus, GSK573719 is a potent anticholinergic agent that demonstrates slow functional reversibility at the human M3 mAChR and long duration of action in animal models. This pharmacological profile translated into a 24-hour duration of bronchodilation in vivo, which suggested umeclidinium will be a once-daily inhaled treatment of pulmonary diseases.


Subject(s)
Lung Diseases/drug therapy , Muscarinic Antagonists/therapeutic use , Quinuclidines/therapeutic use , Administration, Inhalation , Animals , CHO Cells , Calcium/metabolism , Carbachol/pharmacology , Cholinergic Antagonists/pharmacology , Cricetinae , Cricetulus , Guinea Pigs , Kinetics , Lung/drug effects , Mice , Mice, Inbred BALB C , Muscarinic Agonists/pharmacology , Muscarinic Antagonists/administration & dosage , Plethysmography , Quinuclidines/administration & dosage , Receptor, Muscarinic M3/drug effects , Receptors, Muscarinic , Scopolamine Derivatives/pharmacology , Tiotropium Bromide
2.
Bioorg Med Chem Lett ; 22(23): 7087-91, 2012 Dec 01.
Article in English | MEDLINE | ID: mdl-23099092

ABSTRACT

Tyrosine ureas had been identified as potent muscarinic receptor antagonists with promising in vivo activity. Controlling the stereochemistry of the chiral quaternary ammonium center had proved to be a serious issue for this series, however. Herein we describe the preparation and SAR of tyrosine urea antagonists containing achiral quaternary ammonium centers. The most successful such moiety was the 2-methylimidazo[2,1-b][1,3]thiazol-7-ium group which yielded highly potent antagonists with long duration of action in an inhaled animal model of bronchoconstriction.


Subject(s)
Muscarinic Antagonists/chemistry , Quaternary Ammonium Compounds/chemistry , Receptors, Muscarinic/chemistry , Tyrosine/chemistry , Urea/analogs & derivatives , Animals , Bronchi/drug effects , Mice , Muscarinic Antagonists/chemical synthesis , Muscarinic Antagonists/pharmacology , Receptors, Muscarinic/metabolism , Structure-Activity Relationship , Urea/chemical synthesis , Urea/pharmacology
3.
Bioorg Med Chem Lett ; 22(9): 3366-9, 2012 May 01.
Article in English | MEDLINE | ID: mdl-22460029

ABSTRACT

A novel series of N-substituted tropane derivatives was characterized as potent muscarinic acetylcholine receptor antagonists (mAChRs). Kinetic washout studies showed that the N-endosubstituted analog 24 displayed much slower reversibility at mAChRs than the methyl-substituted parent molecule darotropium. In addition, it was shown that this characteristic appeared to translate into enhanced which duration of action in a mouse model of bronchonstriction.


Subject(s)
Muscarinic Antagonists/chemical synthesis , Tropanes/chemical synthesis , Animals , Bronchial Diseases/drug therapy , Drug Design , Mice , Muscarinic Antagonists/pharmacology , Receptors, Muscarinic/drug effects , Structure-Activity Relationship , Tropanes/pharmacology
4.
J Med Chem ; 52(16): 5241-52, 2009 Aug 27.
Article in English | MEDLINE | ID: mdl-19630384
5.
Bioorg Med Chem Lett ; 19(16): 4560-2, 2009 Aug 15.
Article in English | MEDLINE | ID: mdl-19616944

ABSTRACT

Design and syntheses of a novel series of muscarinic antagonists are reported. These efforts have culminated in the discovery of (3-endo)-3-(2-cyano-2,2-diphenylethyl)-8,8-dimethyl-8-azoniabicyclo[3.2.1]octane bromide (4a) as a potent and pan-active muscarinic antagonist as well as a functionally active compound in a murine model of bronchoconstriction. The compound has also displayed pharmacokinetic characteristics suitable for inhaled delivery.


Subject(s)
Biphenyl Compounds/chemistry , Bridged Bicyclo Compounds, Heterocyclic/chemistry , Muscarinic Antagonists/chemistry , Pulmonary Disease, Chronic Obstructive/drug therapy , Receptors, Muscarinic/chemistry , Administration, Inhalation , Animals , Biphenyl Compounds/chemical synthesis , Biphenyl Compounds/pharmacokinetics , Bridged Bicyclo Compounds, Heterocyclic/chemical synthesis , Bridged Bicyclo Compounds, Heterocyclic/pharmacokinetics , Drug Discovery , Humans , Mice , Muscarinic Antagonists/chemical synthesis , Muscarinic Antagonists/pharmacokinetics , Rats , Receptors, Muscarinic/metabolism , Structure-Activity Relationship
6.
Bioorg Med Chem Lett ; 19(6): 1686-90, 2009 Mar 15.
Article in English | MEDLINE | ID: mdl-19243945

ABSTRACT

Exploration of multiple regions of a bi-aryl amine template led to the identification of highly potent M(3) muscarinic acetylcholine receptor antagonists such as 14 (pA(2)=11.0) possessing good sub-type selectivity for M(3) over M(2). The structure-activity relationships (SAR) and optimization of the bi-aryl amine series are described.


Subject(s)
Amines/chemical synthesis , Chemistry, Pharmaceutical/methods , Receptor, Muscarinic M3/antagonists & inhibitors , Amides/chemistry , Amines/pharmacology , Asthma/drug therapy , Drug Design , Electrons , Humans , Inhibitory Concentration 50 , Kinetics , Models, Chemical , Molecular Structure , Pulmonary Disease, Chronic Obstructive/drug therapy , Receptor, Muscarinic M3/chemistry , Structure-Activity Relationship
7.
Bioorg Med Chem Lett ; 19(1): 114-8, 2009 Jan 01.
Article in English | MEDLINE | ID: mdl-19014886

ABSTRACT

A series of N-arylpiperazine camphor sulfonamides was discovered as novel CXCR3 antagonists. The synthesis, structure-activity relationships, and optimization of the initial hit that resulted in the identification of potent and selective CXCR3 antagonists are described.


Subject(s)
Camphor/analogs & derivatives , Receptors, CXCR3/antagonists & inhibitors , Sulfonamides/chemical synthesis , Camphor/chemical synthesis , Camphor/pharmacology , Humans , Piperazines , Structure-Activity Relationship , Sulfonamides/pharmacology
8.
J Med Chem ; 51(19): 5915-8, 2008 Oct 09.
Article in English | MEDLINE | ID: mdl-18798607

ABSTRACT

A series of novel biphenyl piperazines was discovered as highly potent muscarinic acetylcholine receptor antagonists via high throughput screening and subsequent optimization. Compound 5c with respective 500- and 20-fold subtype selectivity for M3 over M2 and M1 exhibited excellent inhibitory activity and long duration of action in a bronchoconstriction in vivo model in mice via intranasal administration. The novel inhaled mAChR antagonists are potentially useful therapeutic agents for the treatment of chronic obstructive pulmonary disease.


Subject(s)
Bronchoconstriction/drug effects , Bronchodilator Agents/pharmacology , Piperazines/pharmacology , Receptors, Muscarinic/drug effects , Administration, Intranasal , Animals , Bronchial Provocation Tests , Bronchoconstrictor Agents/pharmacology , Bronchodilator Agents/chemical synthesis , Bronchodilator Agents/chemistry , Disease Models, Animal , Drug Evaluation, Preclinical , Methacholine Chloride/pharmacology , Mice , Molecular Structure , Piperazines/chemical synthesis , Piperazines/chemistry , Stereoisomerism , Structure-Activity Relationship
9.
Bioorg Med Chem Lett ; 18(20): 5481-6, 2008 Oct 15.
Article in English | MEDLINE | ID: mdl-18818072

ABSTRACT

SAR exploration of multiple regions of a tyrosine urea template led to the identification of very potent muscarinic acetylcholine receptor antagonists such as 10b with good subtype selectivity for M(3) over M(1). The structure-activity relationships (SAR) and optimization of the tyrosine urea series are described.


Subject(s)
Chemistry, Pharmaceutical/methods , Muscarinic Antagonists/chemical synthesis , Receptors, Muscarinic/chemistry , Tyrosine/chemistry , Urea/chemistry , Asthma/drug therapy , Drug Design , Humans , Inhibitory Concentration 50 , Models, Chemical , Molecular Structure , Muscarinic Antagonists/pharmacology , Salts/chemistry , Structure-Activity Relationship
10.
J Med Chem ; 51(16): 4866-9, 2008 Aug 28.
Article in English | MEDLINE | ID: mdl-18680280

ABSTRACT

High throughput screening and subsequent optimization led to the discovery of novel quaternary ammonium salts as highly potent muscarinic acetylcholine receptor antagonists with excellent selectivity. Compounds 8a, 13a, and 13b showed excellent inhibitory activity and long duration of action in bronchoconstriction in vivo models in two species via intranasal or intratracheal administration. The novel inhaled muscarinic receptor antagonists are potentially useful therapeutic agents for the treatment of chronic obstructive pulmonary disease and other bronchoconstriction disorders.


Subject(s)
Muscarinic Antagonists/pharmacology , Phenylurea Compounds/pharmacology , Quaternary Ammonium Compounds/pharmacology , Tyrosine/analogs & derivatives , Animals , Bridged Bicyclo Compounds, Heterocyclic/pharmacology , Bronchoconstriction/drug effects , Drug Evaluation, Preclinical/methods , Guinea Pigs , Mice , Rats , Tyrosine/pharmacology
11.
Bioorg Med Chem Lett ; 18(14): 3950-4, 2008 Jul 15.
Article in English | MEDLINE | ID: mdl-18573659

ABSTRACT

SAR exploration of the central diamine, benzyl, and terminal aminoalkoxy regions of the N-cyclic azaalkyl benzamide series led to the identification of very potent human urotensin-II receptor antagonists such as 1a with a K(i) of 4 nM. The synthesis and structure-activity relationships (SAR) of N-cyclic azaalkyl benzamides are described.


Subject(s)
Benzamides/chemistry , Receptors, G-Protein-Coupled/antagonists & inhibitors , Binding Sites , Chemistry, Pharmaceutical/methods , Diamines/chemistry , Drug Design , Humans , Inhibitory Concentration 50 , Kinetics , Models, Chemical , Structure-Activity Relationship
12.
Bioorg Med Chem Lett ; 17(14): 3864-7, 2007 Jul 15.
Article in English | MEDLINE | ID: mdl-17524641

ABSTRACT

A series of 3-arylamino-2H-1,2,4-benzothiadiazin-5-ol 1,1-dioxides were prepared and shown to be novel and selective antagonists of the CXCR2 receptor. Synthesis, structure and activity relationships, selectivity, and some developability properties are described.


Subject(s)
Benzothiadiazines/pharmacology , Receptors, Interleukin-8B/antagonists & inhibitors , Benzothiadiazines/chemistry , Structure-Activity Relationship
14.
Bioorg Med Chem Lett ; 17(6): 1713-7, 2007 Mar 15.
Article in English | MEDLINE | ID: mdl-17236763

ABSTRACT

N,N'-diarylsquaramides were prepared and evaluated as antagonists of CXCR2. The compounds were found to be potent and selective antagonists of CXCR2. Significant differences in SAR was observed relative to the previously described N,N'-diarylurea series. As was the case in the N,N'-diarylurea series, placing sulfonamide substituent adjacent to the acidic phenol significantly reduced the clearance in rat pharmacokinetic studies.


Subject(s)
Cyclobutanes/chemical synthesis , Cyclobutanes/pharmacology , Cyclobutanes/pharmacokinetics , Receptors, Interleukin-8B/antagonists & inhibitors , Urea/analogs & derivatives , Urea/chemical synthesis , Urea/pharmacology , Urea/pharmacokinetics , Animals , CHO Cells , Chemical Phenomena , Chemistry, Physical , Cricetinae , Cricetulus , Indicators and Reagents , Mass Spectrometry , Phenols/chemistry , Rats , Rats, Sprague-Dawley , Structure-Activity Relationship , Sulfonamides/chemistry
15.
Pulm Pharmacol Ther ; 20(1): 52-9, 2007.
Article in English | MEDLINE | ID: mdl-16406722

ABSTRACT

RATIONALE: Smokers who develop chronic obstructive pulmonary disease (COPD) have amplified inflammation within their lungs, involving selective tissue accumulation of neutrophils, macrophages and CD8+ T cells. CD11b (Mac-1, alphaMbeta(2)-integrin) is both a complement receptor (CR3) and a cell adhesion molecule present on the surface of peripheral blood leukocytes, and undergoes rapid surface upregulation from preformed cytoplasmic stores on activation. Cellular activation can also trigger chemotaxis and shape change, the activation itself being caused by the binding of chemokines to cell surface receptors. METHODS: We developed a method of whole blood flow cytometry to measure neutrophil and monocyte CD11b upregulation on CD16+ and CD14+ cells, employing staining with the nuclear dye LDS-751 immediately before flow cytometry. In addition we assessed neutrophil shape change by modified gated autofluorescence with forward scatter (GAFS), this being correlated with chemotactic responses. RESULTS: In smokers with COPD there was a lower maximal shape change for neutrophils in response to CXCL8 (IL-8) in comparison to healthy smokers (p=0.025), and a trend for lower expression of CD11b and shape change in response to CXCL1 (GRO-alpha). Neutrophils were found to predominantly express chemokine receptors CXCR1 and CXCR2 and respond to CXCL8 with CD11b upregulation, while monocytes express more CCR2 and upregulate CD11b preferentially to CCL2 (MCP-1). A CXCR2 antagonist (SB-656933) was found to inhibit neutrophil CD11b upregulation (IC50=260.7nM) and shape change (IC50=310.5nM) in COPD patients. CONCLUSIONS: Neutrophils and monocytes participate in inflammatory processes in a range of diseases. These whole blood assays can be employed to monitor activity in disease and perform in vitro and ex vivo assessment of chemokine receptor (CXCR) antagonists.


Subject(s)
CD11b Antigen/analysis , Flow Cytometry/methods , Monocytes/immunology , Neutrophils/immunology , Antigens, CD/analysis , Cell Shape , Chemokine CXCL11 , Chemokines, CXC/metabolism , Dose-Response Relationship, Drug , GPI-Linked Proteins , Humans , Interleukin-8/metabolism , Lipopolysaccharide Receptors/analysis , Monocytes/cytology , Monocytes/metabolism , Neutrophils/cytology , Neutrophils/metabolism , Pulmonary Disease, Chronic Obstructive/blood , Pulmonary Disease, Chronic Obstructive/diagnosis , Pulmonary Disease, Chronic Obstructive/immunology , Receptors, IgG/analysis , Receptors, Interleukin-8B/antagonists & inhibitors , Receptors, Interleukin-8B/metabolism , Reproducibility of Results , Up-Regulation/drug effects
16.
Bioorg Med Chem Lett ; 16(21): 5513-6, 2006 Nov 01.
Article in English | MEDLINE | ID: mdl-16934456

ABSTRACT

A series of N-(2-hydroxy-3-sulfonamidobenzene)-N'-arylcyanoguanidines was prepared. In general, these compounds proved to be potent antagonists of CXCR2 while the selectivity versus CXCR1 ranged from non-selective to >200-fold.


Subject(s)
Guanidines/pharmacology , Receptors, Interleukin-8A/antagonists & inhibitors , Receptors, Interleukin-8B/antagonists & inhibitors , Guanidines/chemistry , Humans
17.
Br J Pharmacol ; 148(2): 173-90, 2006 May.
Article in English | MEDLINE | ID: mdl-16547525

ABSTRACT

Several peptidic urotensin-II (UT) receptor antagonists exert 'paradoxical' agonist activity in recombinant cell- and tissue-based bioassay systems, likely the result of differential urotensin-II receptor (UT receptor) signal transduction/coupling efficiency between assays. The present study has examined this phenomenon in mammalian arteries and recombinant UT-HEK (human embryonic kidney) cells.BacMam-mediated recombinant UT receptor upregulation in HEK cells augmented agonist activity for all four peptidic UT ligands studied. The nominal rank order of relative intrinsic efficacy was U-II>urantide ([Pen(5)-DTrp(7)-Orn(8)]hU-II(4-11))>SB-710411 (Cpa-c[DCys-Pal-DTrp-Lys-Val-Cys]-Cpa-amide)>>GSK248451 (Cin-c[DCys-Pal-DTrp-Orn-Val-Cys]-His-amide) (the relative coupling efficiency of recombinant HEK cells was cat>human>>rat UT receptor). The present study further demonstrated that the use of high signal transduction/coupling efficiency isolated blood vessel assays (primate>cat arteries) is required in order to characterize UT receptor antagonism thoroughly. This cannot be attained simply by using the rat isolated aorta, an artery with low signal transduction/coupling efficiency in which low-efficacy agonists appear to function as antagonists. In contrast to the 'low-efficacy agonists' urantide and SB-710411, GSK248451 functioned as a potent UT receptor antagonist in all native isolated tissues studied (UT receptor selectivity was confirmed in the rat aorta). Further, GSK248451 exhibited an extremely low level of relative intrinsic activity in recombinant HEK cells (4-5-fold less than seen with urantide). Since GSK248451 (1 mg kg(-1), i.v.) blocked the systemic pressor actions of exogenous U-II in the anaesthetized cat, it represents a suitable peptidic tool antagonist for delineating the role of U-II in the aetiology of mammalian cardiometabolic diseases.


Subject(s)
Peptide Fragments/pharmacology , Peptides, Cyclic/pharmacology , Receptors, G-Protein-Coupled/antagonists & inhibitors , Urotensins/pharmacology , Animals , Arteries/drug effects , Arteries/physiology , Binding, Competitive/drug effects , Blood Pressure/drug effects , Calcium/metabolism , Cats , Cell Line , Dose-Response Relationship, Drug , Haplorhini , Humans , In Vitro Techniques , Male , Peptide Fragments/metabolism , Peptides, Cyclic/chemistry , Radioligand Assay , Rats , Rats, Sprague-Dawley , Receptors, G-Protein-Coupled/genetics , Receptors, G-Protein-Coupled/metabolism , Recombinant Proteins/antagonists & inhibitors , Recombinant Proteins/metabolism , Urotensins/metabolism , Vasoconstriction/drug effects , Vasoconstrictor Agents/pharmacology
18.
Bioorg Med Chem Lett ; 15(13): 3229-32, 2005 Jul 01.
Article in English | MEDLINE | ID: mdl-15936190

ABSTRACT

High throughput screening of the corporate compound collection led to the discovery of a novel series of substituted aminoalkoxybenzyl pyrrolidines as human urotensin-II receptor antagonists. The synthesis, initial structure-activity relationships, and optimization of the initial hit that led to the identification of a truncated sub-series, represented by SB-436811 (1a), are described.


Subject(s)
Pyrrolidines/chemical synthesis , Receptors, G-Protein-Coupled/antagonists & inhibitors , Drug Evaluation, Preclinical , Humans , Pyrrolidines/pharmacology , Stereoisomerism , Structure-Activity Relationship
19.
Br J Pharmacol ; 145(5): 620-35, 2005 Jul.
Article in English | MEDLINE | ID: mdl-15852036

ABSTRACT

1. SB-706375 potently inhibited [(125)I]hU-II binding to both mammalian recombinant and 'native' UT receptors (K(i) 4.7+/-1.5 to 20.7+/-3.6 nM at rodent, feline and primate recombinant UT receptors and K(i) 5.4+/-0.4 nM at the endogenous UT receptor in SJRH30 cells). 2. Prior exposure to SB-706375 (1 microM, 30 min) did not alter [(125)I]hU-II binding affinity or density in recombinant cells (K(D) 3.1+/-0.4 vs 5.8+/-0.9 nM and B(max) 3.1+/-1.0 vs 2.8+/-0.8 pmol mg(-1)) consistent with a reversible mode of action. 3. The novel, nonpeptidic radioligand [(3)H]SB-657510, a close analogue of SB-706375, bound to the monkey UT receptor (K(D) 2.6+/-0.4 nM, B(max) 0.86+/-0.12 pmol mg(-1)) in a manner that was inhibited by both U-II isopeptides and SB-706375 (K(i) 4.6+/-1.4 to 17.6+/-5.4 nM) consistent with the sulphonamides and native U-II ligands sharing a common UT receptor binding domain. 4. SB-706375 was a potent, competitive hU-II antagonist across species with pK(b) 7.29-8.00 in HEK293-UT receptor cells (inhibition of [Ca(2+)](i)-mobilization) and pK(b) 7.47 in rat isolated aorta (inhibition of contraction). SB-706375 also reversed tone established in the rat aorta by prior exposure to hU-II (K(app) approximately 20 nM). 5. SB-706375 was a selective U-II antagonist with >/=100-fold selectivity for the human UT receptor compared to 86 distinct receptors, ion channels, enzymes, transporters and nuclear hormones (K(i)/IC(50)>1 microM). Accordingly, the contractile responses induced in isolated aortae by KCl, phenylephrine, angiotensin II and endothelin-1 were unaltered by SB-706375 (1 microM). 6. In summary, SB-706375 is a high-affinity, surmountable, reversible and selective nonpeptide UT receptor antagonist with cross-species activity that will assist in delineating the pathophysiological actions of U-II in mammals.


Subject(s)
Pyrrolidines/pharmacology , Receptors, G-Protein-Coupled/antagonists & inhibitors , Receptors, G-Protein-Coupled/genetics , Sulfonamides/pharmacology , Algorithms , Animals , Aorta, Thoracic/drug effects , Binding, Competitive/drug effects , Cats , Cell Line, Tumor , Cell Membrane/metabolism , Haplorhini , Humans , In Vitro Techniques , Mice , Muscle Contraction/drug effects , Muscle, Smooth, Vascular/drug effects , Radioligand Assay , Rats , Recombinant Proteins/metabolism , Rhabdomyosarcoma/metabolism , Species Specificity
20.
Biochem Pharmacol ; 69(7): 1069-79, 2005 Apr 01.
Article in English | MEDLINE | ID: mdl-15763543

ABSTRACT

Urotensin-II (U-II), acting through its G-protein-coupled receptor, UT, is a possible contributor to hypertension. Variable functional responses to U-II, both within and between species studied to date, complicate the characterization of UT antagonists. In the cat, however, U-II causes systemic hypertension and constricts arterial segments isolated from several vascular beds. The purpose of this study was to clone and pharmacologically characterize cat recombinant UT to determine whether this system represents a model for characterizing UT antagonists. Cloned cat UT displayed 74% identity to primate UT, and 77% identity to rodent UT. [(125)I] hU-II bound in a saturable manner to a single site on recombinant cat UT with high affinity (K(D) 288+/-13pM) and high density (B(max) 747+/-66fmol/mg protein). U-II isopeptides displayed equipotent, high affinity binding to cat UT (K(i) 1.8-5.3nM). Cat UT was coupled to intracellular [Ca(2+)] release (EC(50) 0.6+/-0.2nM) and total inositol phosphate (IP) formation (EC(50) 0.4+/-0.1nM). Protein kinase C activation desensitized cat, but not human, UT-mediated IP formation. UT mRNA expression was detected in cat blood vessels, trachea, lung, and kidney, where the medulla (K(D) 815+/-34) and cortex and (K(D) 316+/-39pM) displayed high affinity binding for human U-II (hU-II). The cat urotensin-II receptor represents a suitable in vitro model to examine the role of the U-II/UT system in the etiology of hypertension, assisting in the evaluation of the UT antagonists to help treat cardiovascular disease.


Subject(s)
Cloning, Molecular , Receptors, G-Protein-Coupled/genetics , Amino Acid Sequence , Animals , Calcium Signaling/physiology , Cats , Cell Line , Cell Membrane/physiology , Conserved Sequence , DNA Primers , Humans , Inositol Phosphates/metabolism , Mice , Molecular Sequence Data , Organ Specificity , Polymerase Chain Reaction , RNA, Messenger/genetics , Rats , Receptors, G-Protein-Coupled/drug effects , Receptors, G-Protein-Coupled/metabolism , Recombinant Proteins/drug effects , Recombinant Proteins/metabolism , Sequence Alignment , Sequence Homology, Amino Acid , Transfection
SELECTION OF CITATIONS
SEARCH DETAIL
...