Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
IEEE Trans Neural Netw Learn Syst ; 30(1): 58-71, 2019 01.
Article in English | MEDLINE | ID: mdl-29994321

ABSTRACT

In this paper, we study the problem of finite-time stability and passivity criteria for discrete-time neural networks (DNNs) with variable delays. The main objective is how to effectively evaluate the finite-time passivity conditions for NNs. To achieve this, some new weighted summation inequalities are proposed for application to a finite-sum term appearing in the forward difference of a novel Lyapunov-Krasovskii functional, which helps to ensure that the considered delayed DNN is passive. The derived passivity criteria are presented in terms of linear matrix inequalities. A numerical example is given to illustrate the effectiveness of the proposed results.

2.
IEEE Trans Neural Netw Learn Syst ; 30(3): 913-922, 2019 03.
Article in English | MEDLINE | ID: mdl-30072342

ABSTRACT

This paper examines the robust stabilization problem of continuous-time delayed neural networks via the dissipativity-learning approach. A new learning algorithm is established to guarantee the asymptotic stability as well as the (Q,S,R) - α -dissipativity of the considered neural networks. The developed result encompasses some existing results, such as H∞ and passivity performances, in a unified framework. With the introduction of a Lyapunov-Krasovskii functional together with the Legendre polynomial, a novel delay-dependent linear matrix inequality (LMI) condition and a learning algorithm for robust stabilization are presented. Demonstrative examples are given to show the usefulness of the established learning algorithm.

3.
IEEE Trans Neural Netw Learn Syst ; 28(8): 1840-1850, 2017 08.
Article in English | MEDLINE | ID: mdl-28113729

ABSTRACT

This paper examines the problem of asymptotic stability for Markovian jump generalized neural networks with interval time-varying delays. Markovian jump parameters are modeled as a continuous-time and finite-state Markov chain. By constructing a suitable Lyapunov-Krasovskii functional (LKF) and using the linear matrix inequality (LMI) formulation, new delay-dependent stability conditions are established to ascertain the mean-square asymptotic stability result of the equilibrium point. The reciprocally convex combination technique, Jensen's inequality, and the Wirtinger-based double integral inequality are used to handle single and double integral terms in the time derivative of the LKF. The developed results are represented by the LMI. The effectiveness and advantages of the new design method are explained using five numerical examples.

SELECTION OF CITATIONS
SEARCH DETAIL
...