Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Proc Natl Acad Sci U S A ; 119(33): e2112006119, 2022 08 16.
Article in English | MEDLINE | ID: mdl-35939683

ABSTRACT

IL13Rα2 is an attractive target due to its overexpression in a variety of cancers and rare expression in healthy tissue, motivating expansion of interleukin 13 (IL13)-based chimeric antigen receptor (CAR) T cell therapy from glioblastoma into systemic malignancies. IL13Rα1, the other binding partner of IL13, is ubiquitously expressed in healthy tissue, raising concerns about the therapeutic window of systemic administration. IL13 mutants with diminished binding affinity to IL13Rα1 were previously generated by structure-guided protein engineering. In this study, two such variants, termed C4 and D7, are characterized for their ability to mediate IL13Rα2-specific response as binding domains for CAR T cells. Despite IL13Rα1 and IL13Rα2 sharing similar binding interfaces on IL13, mutations to IL13 that decrease binding affinity for IL13Rα1 did not drastically change binding affinity for IL13Rα2. Micromolar affinity to IL13Rα1 was sufficient to pacify IL13-mutein CAR T cells in the presence of IL13Rα1-overexpressing cells in vitro. Interestingly, effector activity of D7 CAR T cells, but not C4 CAR T cells, was demonstrated when cocultured with IL13Rα1/IL4Rα-coexpressing cancer cells. While low-affinity interactions with IL13Rα1 did not result in observable toxicities in mice, in vivo biodistribution studies demonstrated that C4 and D7 CAR T cells were better able to traffic away from IL13Rα1+ lung tissue than were wild-type (WT) CAR T cells. These results demonstrate the utility of structure-guided engineering of ligand-based binding domains with appropriate selectivity while validating IL13-mutein CARs with improved selectivity for application to systemic IL13Rα2-expressing malignancies.


Subject(s)
Immunotherapy, Adoptive , Interleukin-13 Receptor alpha2 Subunit , Interleukin-13 , Neoplasms , Animals , Cell Line, Tumor , Humans , Immunotherapy, Adoptive/methods , Interleukin-13/genetics , Interleukin-13/pharmacokinetics , Interleukin-13/therapeutic use , Interleukin-13 Receptor alpha2 Subunit/antagonists & inhibitors , Mice , Neoplasms/therapy , Protein Engineering , Tissue Distribution , Xenograft Model Antitumor Assays
2.
Mol Cell ; 81(10): 2094-2111.e9, 2021 05 20.
Article in English | MEDLINE | ID: mdl-33878293

ABSTRACT

Even though SYK and ZAP70 kinases share high sequence homology and serve analogous functions, their expression in B and T cells is strictly segregated throughout evolution. Here, we identified aberrant ZAP70 expression as a common feature in a broad range of B cell malignancies. We validated SYK as the kinase that sets the thresholds for negative selection of autoreactive and premalignant clones. When aberrantly expressed in B cells, ZAP70 competes with SYK at the BCR signalosome and redirects SYK from negative selection to tonic PI3K signaling, thereby promoting B cell survival. In genetic mouse models for B-ALL and B-CLL, conditional expression of Zap70 accelerated disease onset, while genetic deletion impaired malignant transformation. Inducible activation of Zap70 during B cell development compromised negative selection of autoreactive B cells, resulting in pervasive autoantibody production. Strict segregation of the two kinases is critical for normal B cell selection and represents a central safeguard against the development of autoimmune disease and B cell malignancies.


Subject(s)
Autoimmunity , Neoplasms/enzymology , Neoplasms/prevention & control , Syk Kinase/metabolism , ZAP-70 Protein-Tyrosine Kinase/metabolism , Animals , Antigens, CD19/metabolism , B-Lymphocytes , Calcium/metabolism , Cell Differentiation , Cell Transformation, Neoplastic , Enzyme Activation , Humans , Immune Tolerance , Lymphoma, B-Cell/enzymology , Lymphoma, B-Cell/pathology , Mice , Models, Genetic , NFATC Transcription Factors/metabolism , Neoplasm Proteins , Phosphatidylinositol 3-Kinases/metabolism , Protein Binding , Receptors, Antigen, B-Cell/metabolism , Signal Transduction
3.
Diabetes ; 70(5): 1070-1083, 2021 05.
Article in English | MEDLINE | ID: mdl-33563657

ABSTRACT

Proliferation of pancreatic ß-cells has long been known to reach its peak in the neonatal stages and decline during adulthood. However, ß-cell proliferation has been studied under the assumption that all ß-cells constitute a single, homogenous population. It is unknown whether a subpopulation of ß-cells retains the capacity to proliferate at a higher rate and thus contributes disproportionately to the maintenance of mature ß-cell mass in adults. We therefore assessed the proliferative capacity and turnover potential of virgin ß-cells, a novel population of immature ß-cells found at the islet periphery. We demonstrate that virgin ß-cells can proliferate but do so at rates similar to those of mature ß-cells from the same islet under normal and challenged conditions. Virgin ß-cell proliferation rates also conform to the age-dependent decline previously reported for ß-cells at large. We further show that virgin ß-cells represent a long-lived, stable subpopulation of ß-cells with low turnover into mature ß-cells under healthy conditions. Our observations indicate that virgin ß-cells at the islet periphery can divide but do not contribute disproportionately to the maintenance of adult ß-cell mass.


Subject(s)
Insulin-Secreting Cells/cytology , Insulin-Secreting Cells/metabolism , Islets of Langerhans/cytology , Islets of Langerhans/metabolism , Animals , Cell Differentiation/physiology , Cell Proliferation/physiology , Female , Flow Cytometry , Fluorescent Antibody Technique , Glucose Tolerance Test , Humans , Male , Mice , Mice, Inbred C57BL
SELECTION OF CITATIONS
SEARCH DETAIL
...