Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
ACS Appl Mater Interfaces ; 14(36): 41481-41488, 2022 Sep 14.
Article in English | MEDLINE | ID: mdl-36048905

ABSTRACT

Monitoring the hydrogen gas (H2) level is highly important in a wide range of applications. Oxide-carbon hybrids have emerged as a promising material for the fabrication of gas sensors for this purpose. Here, for the first time, graphitic carbon nitride (g-C3N4)-doped zinc oxide nanorods (ZNRs) have been grown on silicon (Si) pyramid-shaped surfaces by the facile hydrothermal reaction method. The systematic material analyses have revealed that the g-C3N4 nanostructures (NS) have been consistently incorporated into the ZNRs on the pyramidal silicon (Py-Si) surface (g-C3N4-ZNRs/Py-Si). The combined properties of the present structure exhibit an excellent sensitivity (∼53%) under H2 gas exposure, better than that of bare ZNRs (12%). The results revealed that the fine incorporation of g-C3N4 into ZNRs on the Py-Si surface improves the H2 gas sensing properties when compared to that of the planar silicon (Pl-Si) surface. The doping of g-C3N4 into ZNRs increases the electrical conductivity through its graphene-like edges (due to the formation of delocalized bonds in g-C3N4 during carbon self-doping), as revealed by FESEM images. In addition, the presence of defects in g-C3N4 induces the gas adsorption properties of ZnO through its active sites. Moreover, the integration of the 1D structure (g-C3N4-ZNRs) into a 3D pyramidal structure opens up new opportunities for low-cost H2 gas sensing at room temperature. It is an easy way to enhance the gas sensing properties of ZNRs at room temperature, which is desirable for practical H2 sensor applications.

2.
ACS Appl Mater Interfaces ; 13(40): 48260-48269, 2021 Oct 13.
Article in English | MEDLINE | ID: mdl-34590814

ABSTRACT

Herein, for the first time, a combination of detonation nanodiamond (DND)-tungsten disulfide (WS2) was devised and studied for its selective H2-sensing properties at room temperature. DND-WS2 samples were prepared by a sonication-assisted (van der Waals interaction) liquid-phase exfoliation process in low-boiling solvents with DND as a surfactant. The samples were further hydrothermally treated in an autoclave under high pressure and temperature. The as-prepared samples were separated as two parts named DND-WS2 BH (before hydrothermal) and DND-WS2 AH (after hydrothermal). The exfoliated bilayer to few-layer DND-doped WS2 nanosheets were confirmed by ultraviolet-visible spectra, atomic force microscopy, and transmission electron microscopy studies. It was observed that the DND powder not only acted as a surfactant but also doped and expanded on WS2 nanosheets. The difference between samples BH and AH treatment was further investigated using Raman spectroscopy. The WS2 and DND-WS2 samples on SiO2/Si were fabricated using a sputtered Pd/Ag interdigitated electrode and utilized for H2 gas-sensing measurements. Surprisingly, the DND-WS2 exhibits an ultrahigh sensor response of 72.8% to H2 at 500 ppm when compared to only 9.9% for WS2 alone. Also, the DND-WS2 shows a fast response/recovery time, high selectivity, and stability toward H2 gas. It can be attributed to the correlation of the intergrain phase of DND nanoparticles and WS2 nanosheets, which contributes to the easy transportation of charge carriers when exposed to the air and H2 gas atmosphere. Moreover, it is believed that DND-induced WS2 exfoliation might inspire future synthesis of transition metal dichalcogenides induced by DND in green solvents.

3.
ACS Appl Mater Interfaces ; 12(2): 3254-3264, 2020 Jan 15.
Article in English | MEDLINE | ID: mdl-31859477

ABSTRACT

A novel self-assembled hierarchical heterostructure is derived from cocoon-derived sericin biopolymer (CSP) biowaste with ZnO deposited on ultra-nanocrystalline diamond (UNCD) substrates using a scalable chemical deposition technique. Then, high-performance long-life UV photodetectors are fabricated using this hybrid sericin, diamond, and ZnO (SDZ) nanostructure. The microstructural analysis reveals a several nanometer-thick CSP shell coated with a highly uniform ZnO nanorod (ZNR) array grown on the UNCD substrate. The CSP shell also contains columnar nanograins on top of the ZNR as well as vertical sidewalls with unique alignments. The hierarchical core-shell SDZ heterostructures reveal superior UV diode performance, with an ultrahigh UV switching ratio of 1.1 × 105 at 5 V, an increase of up to 49 900% greater than that of as-grown ZNRs (220). High UV responsivity is observed around 3.6 A W-1 under 365 nm UV light illumination. The perfect distribution of the sericin in the ZNRs on the UNCD substrates resulted in the ultrafast electron-hole recombination. The sericin dopants and the UNCD interlayer enabled the device to reach new energy levels in the conduction band, with the reduced barrier height allowing for improved charge carrier transportation during UV light illumination. It is believed that the sericin dopants and the UNCD layer increased the UV adsorptivity and the amount of conducting carbon dopants within the ZNRs was sufficient for s0tability. These noteworthy features make the SDZ heterostructures promising candidates for the fabrication of cost-efficient biopolymers and UNCD hybrid-based UV photodetectors.


Subject(s)
Diamond/chemistry , Nanoparticles/chemistry , Sericins/chemistry , Ultraviolet Rays , Zinc Oxide/chemistry , Animals , Electricity , Nanoparticles/ultrastructure , Photoelectron Spectroscopy , Spectrum Analysis, Raman , X-Ray Diffraction
4.
Chemistry ; 25(44): 10385-10393, 2019 Aug 06.
Article in English | MEDLINE | ID: mdl-31155774

ABSTRACT

This article outlines a novel material to enable the detection of hydrogen gas. The material combines thin-film metallic glass (TFMG), ultra-nanocrystalline diamond (UNCD), and ZnO nanorods (ZNRs) and can be used as a device for effective hydrogen gas sensing. Three sensors were fabricated by using combinations of pure ZNRs (Z), UNCD/ZNRs (DZ), and TFMG/UNCD/ZNRs (MDZ). The MDZ device exhibited a performance superior to the other configurations, with a sensing response of 34 % under very low hydrogen gas concentrations (10 ppm) at room temperature. Remarkably, the MDZ-based sensor exhibits an ultra-high sensitivity of 60.5 % under 500 ppm H2 . The MDZ sensor proved very fast in terms of response time (20 s) and recovery time (35 s). In terms of selectivity, the sensors were particularly suited to hydrogen gas. The sensor achieved the same response performance even after two months, thereby demonstrating the superior stability. It is postulated that the superior performance of MDZ can be attributed to defect-related adsorption as well as charge carrier density. This paper also discusses the respective energy band models of these heterostructures and also the interface effect on the gas sensing enhancements. The results indicate that the proposed hybrid TFMG/UNCD/ZNRs nanostructures could be utilized as high-performance hydrogen gas sensors.

5.
Chemistry ; 24(48): 12574-12583, 2018 Aug 27.
Article in English | MEDLINE | ID: mdl-29856890

ABSTRACT

High performance UV/Visible photodetectors are successfully fabricated from ZnO/fibroin protein-carbon nanotube (ZFPCNT ) composites using a simple hydrothermal method. The as-fabricated ZnO nanorods (ZnO NRs) and ZFPCNT nanostructures were measured under different light illuminations. The measurements showed the UV-light photoresponse of the as-fabricated ZFPCNT nanostructures (55,555) to be approximately 26454 % higher than that of the as-prepared ZnO NRs (210). This photodetector can sense photons with energies considerably smaller (2.75 eV) than the band gap of ZnO (3.22 eV). It was observed that the finest distribution of fibroin and CNT into 1D ZnO resulted in rapid electron transportation and hole recombination via carbon/nitrogen dopants from the ZFPCNT . Carbon dopants create new energy levels on the conduction band of the ZFPCNT , which reduces the barrier height to allow for charge carrier transportation under light illumination. Moreover, the nitrogen dopants increase the adsorptivity and amount of oxygen vacancies in the ZFPCNT so that it exhibits fast response/recovery times both in the dark and under light illumination. The selectivity of UV light among the other types of illumination can be ascribed to the deep-level energy traps (ET ) of the ZFPCNT . These significant features of ZFPCNT lead to the excellent optical properties and creation of new pathways for the production of low-cost semiconductors and bio-waste protein based UV/Visible photodetectors.


Subject(s)
Electrical Equipment and Supplies , Fibroins/chemistry , Nanostructures/chemistry , Optical Devices , Zinc Oxide/chemistry , Electron Transport , Industrial Waste , Nanotubes/chemistry , Nanotubes, Carbon/chemistry , Semiconductors , Ultraviolet Rays
6.
ACS Appl Mater Interfaces ; 9(45): 39771-39780, 2017 Nov 15.
Article in English | MEDLINE | ID: mdl-29052978

ABSTRACT

Granular activated carbon (GAC) materials were prepared via simple gas activation of silkworm cocoons and were coated on ZnO nanorods (ZNRs) by the facile hydrothermal method. The present combination of GAC and ZNRs shows a core-shell structure (where the GAC is coated on the surface of ZNRs) and is exposed by systematic material analysis. The as-prepared samples were then fabricated as dual-functional sensors and, most fascinatingly, the as-fabricated core-shell structure exhibits better UV and H2 sensing properties than those of as-fabricated ZNRs and GAC. Thus, the present core-shell structure-based H2 sensor exhibits fast responses of 11% (10 ppm) and 23.2% (200 ppm) with ultrafast response and recovery. However, the UV sensor offers an ultrahigh photoresponsivity of 57.9 A W-1, which is superior to that of as-grown ZNRs (0.6 A W-1). Besides this, switching photoresponse of GAC/ZNR core-shell structures exhibits a higher switching ratio (between dark and photocurrent) of 1585, with ultrafast response and recovery, than that of as-grown ZNRs (40). Because of the fast adsorption ability of GAC, it was observed that the finest distribution of GAC on ZNRs results in rapid electron transportation between the conduction bands of GAC and ZNRs while sensing H2 and UV. Furthermore, the present core-shell structure-based UV and H2 sensors also well-retained excellent sensitivity, repeatability, and long-term stability. Thus, the salient feature of this combination is that it provides a dual-functional sensor with biowaste cocoon and ZnO, which is ecological and inexpensive.

7.
ACS Appl Mater Interfaces ; 9(13): 12064-12072, 2017 Apr 05.
Article in English | MEDLINE | ID: mdl-28306246

ABSTRACT

Herein, we report the novel nanostructural interfaces of self-assembled hierarchical ZnO nanotubes/graphene (ZNT/G) with three different growing times of ZNTs on graphene substrates (namely, SH1, SH2, and SH3). Each sample was fabricated with interdigitated electrodes to form hydrogen sensors, and their hydrogen sensing properties were comprehensively studied. The systematic investigation revealed that SH1 sensor exhibits an ultrahigh sensor response even at a low detection level of 10 ppm (14.3%) to 100 ppm (28.1%) compared to those of the SH2 and SH3 sensors. The SH1 sensor was also found to be well-retained with repeatability, reliability, and long-term stability of 90 days under hydrogenation/dehydrogenation processes. This outstanding enhancement in sensing properties of SH1 is attributed to the formation of a strong metalized region in the ZNT/G interface due to the inner/outer surfaces of ZNTs, establishing a multiple depletion layer. Furthermore, the respective band models of each nanostructure were also purposed to describe their heterostructure, which illustrates the hydrogen sensing properties. Moreover, the long-term stability can be ascribed by the heterostructured combination of ZNTs and graphene via a spillover effect. The salient features of this self-assembled nanostructure are its reliability, simple synthesis method, and long-term stability, which makes it a promising candidate for new generation hydrogen sensors and hydrogen storage materials.

8.
ACS Appl Mater Interfaces ; 9(5): 4916-4925, 2017 Feb 08.
Article in English | MEDLINE | ID: mdl-28084726

ABSTRACT

High-performance diamond electron field emitters (EFEs) with extremely low turn-on field (E0 = 1.72 V/µm) and high current density (1.70 mA/cm2 at an applied field of 3.86 V/µm) were successfully synthesized by using a modified two-step microwave plasma chemical deposition process. Such emitters possess EFE properties comparable with most of carbon- or semiconductor-based EFE materials, but with markedly better lifetime stability. The superb EFE behavior of these materials was achieved owing to the reduction in the diamond-to-Si interfacial resistance and the increase in the conductivity of the bulk diamond films (HBD-400 V) via the applications of high bias voltage during the preparation of the ultrananocrystalline diamond (UNCD) primary layer and the subsequent plasma post-treatment (PPT) process, respectively. The superior EFE properties along with enhanced robustness of HBD-400 V films compared with the existing diamond-based EFE materials rendered these materials of greater potential for applications in high brightness display and multifunctional microplasma.

9.
ACS Appl Mater Interfaces ; 7(49): 27078-86, 2015 Dec 16.
Article in English | MEDLINE | ID: mdl-26600002

ABSTRACT

In the age of hand-held portable electronics, the need for robust, stable and long-life cathode materials has become increasingly important. Herein, a novel heterogranular-structured diamond-gold nanohybrids (HDG) as a long-term stable cathode material for field-emission (FE) display and plasma display devices is experimentally demonstrated. These hybrid materials are electrically conductive that perform as an excellent field emitters, viz. low turn-on field of 2.62 V/µm with high FE current density of 4.57 mA/cm(2) (corresponding to a applied field of 6.43 V/µm) and prominently high lifetime stability lasting for 1092 min revealing their superiority on comparison with the other commonly used field emitters such as carbon nanotubes, graphene, and zinc oxide nanorods. The process of fabrication of these HDG materials is direct and easy thereby paving way for the advancement in next generation cathode materials for high-brightness FE and plasma-based display devices.

10.
Chemistry ; 21(45): 16017-26, 2015 Nov 02.
Article in English | MEDLINE | ID: mdl-26382200

ABSTRACT

We have designed photodetectors and UV field emitters based on a combination of ZnO nanowires/nanorods (ZNRs) and bilayer diamond films in a metal-semiconductor-metal (MSM) structure. The ZNRs were fabricated on different diamond films and systematic investigations showed an ultra-high photoconductive response from ZNRs prepared on ultrananocrystalline diamond (UNCD) operating at a lower voltage of 2 V. We found that the ZNRs/UNCD photodetector (PD) has improved field emission properties and a reduced turn-on field of 2.9 V µm(-1) with the highest electron field emission (EFE) by simply illuminating the sample with ultraviolet (UV) light. The photoresponse (Iphoto /Idark ) behavior of the ZNRs/UNCD PD exhibits a much higher photoresponse (912) than bare ZNRs (229), ZNRs/nanocrystalline diamond (NCD; 518), and ZNRs/microcrystalline diamond (MCD; 325) under illumination at λ=365 nm. A photodetector with UNCD films offers superior stability and a longer lifetime compared with carbon materials and bare ZNRs. The lifetime stability of the ZNRs/UNCD-based device is about 410 min, which is markedly superior to devices that use bare ZNRs (92 min). The ZNRs/UNCD PD possesses excellent photoresponse properties with improved lifetime and stability; in addition, ZNRs/UNCD-based UV emitters have great potential for applications such as cathodes in flat-panel displays and microplasma display devices.

11.
ACS Appl Mater Interfaces ; 7(25): 14035-42, 2015 Jul 01.
Article in English | MEDLINE | ID: mdl-26057303

ABSTRACT

Bias-enhanced nucleation and growth of diamond-graphite nanohybrid (DGH) films on silicon substrates by microwave plasma enhanced chemical vapor deposition using CH4/N2 gas mixture is reported herein. It is observed that by controlling the growth time, the microstructure of the DGH films and, thus, the electrical conductivity and the electron field emission (EFE) properties of the films can be manipulated. The films grown for 30 min (DGHB30) possess needle-like geometry, which comprised of a diamond core encased in a sheath of sp(2)-bonded graphitic phase. These films achieved high conductivity of σ = 900 S/cm and superior EFE properties, namely, low turn-on field of 2.9 V/µm and high EFE current density of 3.8 mA/cm(2) at an applied field of 6.0 V/µm. On increasing the growth time to 60 min (the DGHB60), the acicular grain growth ceased and formed nanographite clusters or defective diamond clusters (n-diamond). Even though DGHB60 films possess higher electrical conductivity (σ = 1549 S/cm) than the DGHB30 films, the EFE properties degraded. The implication of this result is that higher conductivity by itself does not guarantee better EFE properties. The nanosized diamond grains with needle-like geometry are the most promising ones for the electron emission, exclusively when they are encased in graphene-like layers. The salient feature of such materials with unique granular structure is that their conductivity and EFE properties can be tuned in a wide range, which makes them especially useful in practical applications.

12.
ACS Appl Mater Interfaces ; 6(13): 10566-75, 2014 Jul 09.
Article in English | MEDLINE | ID: mdl-24945940

ABSTRACT

Microstructural evolution of ultrananocrystalline diamond (UNCD) films in the bias-enhanced nucleation and growth (BEN-BEG) process in CH4/Ar plasma is systematically investigated. The BEN-BEG UNCD films possess higher growth rate and better electron field emission (EFE) and plasma illumination (PI) properties than those of the films grown without bias. Transmission electron microscopy investigation reveals that the diamond grains are formed at the beginning of growth for films grown by applying the bias voltage, whereas the amorphous carbon forms first and needs more than 30 min for the formation of diamond grains for the films grown without bias. Moreover, the application of bias voltage stimulates the formation of the nanographite phases in the grain boundaries of the UNCD films such that the electrons can be transported easily along the graphite phases to the emitting surface, resulting in superior EFE properties and thus leading to better PI behavior. Interestingly, the 10 min grown UNCD films under bias offer the lowest turn-on field of 4.2 V/µm with the highest EFE current density of 2.6 mA/cm(2) at an applied field of 7.85 V/µm. Such superior EFE properties attained for 10 min bias grown UNCD films leads to better plasma illumination (PI) properties, i.e., they show the smallest threshold field of 3300 V/cm with largest PI current density of 2.10 mA/cm(2) at an applied field of 5750 V/cm.

SELECTION OF CITATIONS
SEARCH DETAIL
...